
Exploring, Visualizing, and Modeling Big Data
with R

Okan Bulut Christopher Desjardins

2021-10-26

2

Contents

1 Preface 7
1.1 Summary . 7

1.2 Who we are . 8

2 Introduction 9
2.1 What is big data? . 9

2.2 Why is big data important? . 9

2.3 How do we analyze big data? . 11

2.4 Additional resources . 13

2.5 PISA dataset . 14

3 Exploratory data analysis 15
3.1 What is exploratory data analysis? 15

3.2 Confirmatory data analysis . 16

3.3 A framework for EDA . 16

3.4 EDA tools . 17

4 Wrangling big data 19
4.1 What is data.table? . 19

4.2 Reading/writing data with data.table 22

4.3 Using the i in data.table . 24

4.4 Using the j in data.table . 25

4.5 Summarizing using the by in data.table 31

4.6 Reshaping data . 34

3

4 CONTENTS

4.7 The sparklyr package . 36

4.8 Lab . 38

5 Visualizing big data 41

5.1 Introduction to ggplot2 . 43

5.2 Marginal plots . 44

5.3 Conditional plots . 54

5.4 Plots for examining correlations 58

5.5 Plots for examining means by group 60

5.6 Plots for ordinal/categorical variables 63

5.7 Interactive plots with plotly . 65

5.8 Customizing visualizations . 70

5.9 Lab . 72

6 Modeling big data 75

6.1 Introduction to machine learning 75

6.2 Types of machine learning . 83

7 Supervised Machine Learning - Part I 87

7.1 Decision Trees . 87

7.2 Decision trees in R . 90

7.3 Random Forests . 112

7.4 Random forests in R . 113

8 Supervised Machine Learning - Part II 123

8.1 Support Vector Machines . 123

9 Unsupervised machine learning 149

9.1 Clustering . 149

9.2 Distance Measures . 149

9.3 K-means clustering . 150

9.4 K-means clustering in R . 151

CONTENTS 5

10 Summary 153

10.1 Topics covered . 153

10.2 Methods we didn’t cover . 154

6 CONTENTS

Chapter 1

Preface

1.1 Summary

Working with BIG DATA requires a particular suite of data analytics tools and
advanced techniques, such as machine learning (ML). Many of these tools are
readily and freely available in R. This full-day session will provide participants
with a hands-on training on how to use data analytics tools and machine learning
methods available in R to explore, visualize, and model big data.

7

https://cran.r-project.org/

8 CHAPTER 1. PREFACE

The first half of our training session will focus on organizing (manipulating and
summarizing) and visualizing (both statically and dynamically) big data in R.
The second half will involve a series of short lectures on ML techniques (deci-
sion trees, random forests, and support vector machines), as well as hands-on
demonstrations applying these methods in R. Examples will be drawn from the
OECD’s Programme for International Student Assessment (PISA). Participants
will get opportunities to work through several hands-on lab sessions throughout
the day.

1.2 Who we are

1. Okan Bulut – University of Alberta

• Associate Professor of educational measurement and psychometrics
at the University of Alberta

• 10+ years using the R programming language for data analysis and
visualization

• Specialized in the analysis and visualization of big data (mostly from
large-scale assessments)

• 6+ years teaching courses and workshops on statistics, psychometrics,
and programming with R

• https://github.com/okanbulut and https://sites.ualberta.ca/
~bulut/

• E-mail: bulut@ualberta.ca

2. Christopher D. Desjardins – University of Minnesota

• Research Associate at the Research Methodology Consulting Center.
• R user since 2006 and contributer since 2009.
• https://github.com/cddesja and https://cddesja.github.io/
• E-mail: cdesjard@umn.edu

We also co-authored:

• Two R packages – profileR for profile analysis of multivariate data and
hemp for psychometric analysis of assessment data

• A recent book titled Handbook of Educational Measurement and Psycho-
metrics Using R

http://www.oecd.org/pisa/
https://github.com/okanbulut
https://sites.ualberta.ca/~bulut/
https://sites.ualberta.ca/~bulut/
mailto:bulut@ualberta.ca
https://github.com/cddesja
https://cddesja.github.io/
mailto:cdesjard@umn.edu
https://cran.r-project.org/web/packages/profileR/index.html
https://github.com/cddesja/hemp
https://www.crcpress.com/Handbook-of-Educational-Measurement-and-Psychometrics-Using-R/Desjardins-Bulut/p/book/9781498770132
https://www.crcpress.com/Handbook-of-Educational-Measurement-and-Psychometrics-Using-R/Desjardins-Bulut/p/book/9781498770132

Chapter 2

Introduction

2.1 What is big data?

When we handle a data-related problem, how do we know that we are actually
dealing with “big data”? What is “big data”? What characteristics make a
dataset big? The following three characteristics (three Vs of big data, source:
TechTarget) can help us define the size of data:

1. Volume: The number of rows or cases (e.g., students) and the number of
columns or variables (e.g., age, gender, student responses, response times)

2. Variety: Whether there are secondary sources or data that expand the
existing data even further

3. Velocity: Whether real-time data are being used

2.2 Why is big data important?

Nowadays nearly every private and public sector of industry, commerce, health,
education, and so forth are talking about big data. Data is a strategic and
valuable asset when we know which questions we want to answer (see Bernard
Marr’s article titled Big Data: Too Many Answers, Not Enough Questions).
Therefore, it is very important to identify the right questions at the beginning of
data collection. More data with appropriate questions can yield quality answers
that we can use for better decision-making. However, too much data without
any purpose may obfuscate the truth.
Currently big data is used to better understand customers and their behav-
iors and preferences. Consider Netflix – one of the world’s leading subscription

9

https://whatis.techtarget.com/definition/3Vs
https://www.forbes.com/sites/bernardmarr/2015/08/25/big-data-too-many-answers-not-enough-questions/#527635fb1361
https://www.netflix.com

10 CHAPTER 2. INTRODUCTION

Figure 2.1: Three Vs of big data

2.3. HOW DO WE ANALYZE BIG DATA? 11

services for watching movies and TV shows online. They use big data – such
as customers’ ratings for each movie and TV show and when customers sub-
scribe/unsubscribe – to make better recommendations for existing customers
and to convince more customers to subscribe. Target, a big retailer in the US,
implements data mining techniques to predict pregnancies of their shoppers and
send them a sale booklet for baby clothes, cribs, and diapers (see this interest-
ing article). Car insurance companies analyze big data from their customers to
understand how well their customers actually drive and how much they need to
charge each customer to make a profit.

In education, there is no shortage of big data. Student records, teacher obser-
vations, assessment results, and other student-related databases make tons of
information available to researchers and practitioners. With the advent of new
technologies such as facial recognition software and biometric signals, now we get
access to a variety of visual and audio data on students. In the context of edu-
cational testing and psychometrics, big data can help us to assess students more
accurately, while continuously monitoring their progress via learning analytics.
We can use log data and response times to understand students’ engagement
with the test, whether they were cheating, and whether they had pre-knowledge
of the items presented on the test.

2.3 How do we analyze big data?

Big data analysis often begins with reading and then extracting the data. First,
we need to read the data into a software program – such as R – and then manage
it properly. Second, we need to extract a subset, sample, or summary from the
big data. Due to its size, even a subset of the big data might itself be quite
large. Third, we need to repeat computation (e.g., fitting a model) for many
subgroups of the data (e.g., for each individual or by larger groups that combine
individuals based on a particular characteristic). Therefore, we need to use the
right tools for our data operations. For example, we may need to store big data
in a data warehouse (either a local database or a cloud system) and then pass
subsets of data from the warehouse to the local machine where we are analyzing
the data.

R, maintained by the R Core Team, has its packages (collect of R functions)
available on this The Comprehensive R Archive Network (CRAN). It used to
be considered an inadequate programming language for big data (see Douglass
Merril’s article from 2012). Fortunately, today’s R, with the help of RStudio
and many data scientists, is capable of running most analytic tasks for big data
either alone or with the help of other programs and programming languages,
such as Spark, Hadoop, SQL, and C++ (see Figure 2.2). R is an amazing data
science programming tool, it has a myriad statistical techniques available, and
can readily translate the results of our analyses into colourful graphics. There is
no doubt that R is one of the most preferred programming tool for statisticians,

https://www.driveresearch.com/single-post/2016/12/06/How-Target-Used-Data-Analytics-to-Predict-Pregnancies
https://www.edweek.org/ew/articles/2016/01/13/the-future-of-big-data-and-analytics.html
https://www.smartdatacollective.com/jay-z-kanye-west-used-biometrics-beat-album-leaks/
https://isit.arts.ubc.ca/learning-analytics-examples/
https://link.springer.com/content/pdf/10.1007%2Fs41237-018-0063-y.pdf
https://www.r-project.org/contributors.html
https://cran.r-project.org/
https://www.forbes.com/sites/douglasmerrill/2012/05/01/r-is-not-enough-for-big-data/#59c7ad9b5924
https://www.rstudio.com/
https://spark.apache.org/docs/latest/sparkr.html
https://hadoop.apache.org/
https://en.wikipedia.org/wiki/SQL
http://www.cplusplus.com/

12 CHAPTER 2. INTRODUCTION

data scientists, and data analysts who deal with big data on a daily basis.

Figure 2.2: Other big data programs integrated with R

Some general suggestions on big data analysis include:

1. Obtain a strong computer (multiple and faster CPUs, more memory)

2. If memory is a problem, access the data differently or split up the data

3. Preview a subset of big data using a program, not the entire raw data.

4. Visualize either a subset of data or a summary of the big data, not the
entire raw data.

5. Calculate necessary summary statistics manually, not for all variables in
big data.

6. Delay computationally expensive operations (e.g., those that require large
memory) until you actually need them.

7. Consider using parallel computing – parallel and foreach packages and
cloud computing

8. Profile big tasks (in R) to cut down on computational time

https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf
https://cran.r-project.org/web/packages/foreach/vignettes/foreach.pdf
https://rstudio.cloud/

2.4. ADDITIONAL RESOURCES 13

start_time <- proc.time()

Do all of your coding here

end_time <- proc.time()
end_time - start_time

Alternatively,

system.time({

Do all of your coding here

})

During this training session, we will follow these steps and demonstrate how
each one helps us explore, visualize, and model big data in R.

2.4 Additional resources

There are dozens of online resources and books on big data analysis. Here are
a few of them that we recommend you check out:

• James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An intro-
duction to statistical learning with applications in R. New York, NY:
Springer. (Freely available from the authors’ website: http://www-bcf.
usc.edu/~gareth/ISL/index.html)

• Grolemund, G., & Wickham, H. (2016). R for data science. Sebastopol,
CA: O’Reilly Media, Inc. (Freely available from the authors’ website: http:
//r4ds.had.co.nz/)

• Baumer, B. S., Kaplan, D. T., & Horton, N. J. (2017). Modern data
science with R. Boca Raton, FL: CRC Press.

• Romero, C., Ventura, S., Pechenizkiy, M., & Baker, de, R. S. J. (Eds.)
(2011). Handbook of educational data mining. (Chapman and Hall/CRC
data mining and knowledge discovery series). Boca Raton: CRC Press.

• DataCamp: https://www.datacamp.com/tracks/big-data-with-r

• RStudio: https://www.rstudio.com/resources/webinars/working-with-
big-data-in-r/

http://www-bcf.usc.edu/~gareth/ISL/index.html
http://www-bcf.usc.edu/~gareth/ISL/index.html
http://r4ds.had.co.nz/
http://r4ds.had.co.nz/
https://mdsr-book.github.io/
https://mdsr-book.github.io/
https://www.datacamp.com/tracks/big-data-with-r
https://www.rstudio.com/resources/webinars/working-with-big-data-in-r/
https://www.rstudio.com/resources/webinars/working-with-big-data-in-r/

14 CHAPTER 2. INTRODUCTION

2.5 PISA dataset

In this training session, we will use the 2015 administration of the OECD’s
Programme for International Student Assessment (PISA). PISA is a large-scale,
international assessment that involves students, parents, teachers, and school
principals from all over the world as participants. Every three years, PISA
tests 15-year-old students from all over the world in reading, mathematics and
science. The tests are designed to gauge how well the students master key
subjects in order to be prepared for real-life situations in the adult world.

In addition to assessing students’ competencies, PISA also aims to inform ed-
ucational policies and practices for the participating countries and economies
by providing additional information obtained from students, parents, teach-
ers, and school principals through the questionnaires. Students complete a
background questionnaire with questions about themselves, their family and
home, and their school and learning experiences. School principals complete a
questionnaire about the system and learning environment in schools. In some
countries, teachers and parents also complete optional questionnaires to provide
more information on their perceptions and expectations regarding students. In
this training session, we specifically focus on the assessment data and the back-
ground questionnaire that all participating students are required to complete.

The 2015 administration of PISA involves approximately 540,000 15-year-old
students from 72 participating countries and economies. During this training
session, we will sometimes use the entire dataset or take a subset of the PISA
dataset to demonstrate the methods used for exploring, visualizing, and mod-
eling big data. For more details about the PISA dataset and its codebooks,
please see the PISA website.

The three data files that we will use in this training session can be downloaded
using the following links. Please download and unzip the files to follow the
examples that we will demonstrate in this training session.

• http://bit.ly/2VleDPZ (all PISA records – 331.65 MB)
• http://bit.ly/2Uf2mQA (only 6 regions with 17 countries – 103.76 MB)
• http://bit.ly/2YNzei0 (randomly selected cases from 6 regions – 22.92

MB)

http://www.oecd.org/pisa/
http://www.oecd.org/pisa/data/2015database/
http://bit.ly/2VleDPZ
http://bit.ly/2Uf2mQA
http://bit.ly/2YNzei0

Chapter 3

Exploratory data analysis

3.1 What is exploratory data analysis?

Figure 3.1: The EDA classic.

Exploratory data analysis is detective work – numerical detective
work – or counting detective work – or graphical detective work.

To learn about data analysis, it is right that each of us try many
things that do not work

15

16 CHAPTER 3. EXPLORATORY DATA ANALYSIS

Exploratory data analysis (EDA) is an iterative, hypothesis-generating
framework. Through EDA, we hope to uncover new relationships among
the variables in our data. In EDA, our job is the accumulation of evidence,
preferably novel evidence and the widespread availability of powerful comput-
ers and able statistical tools means accumulating evidence is much easier now
than ever before. But everything we find may not be meaningful. Nonetheless,
our job is not to evaluate what we’ve learned but rather discovery and EDA “is
an attitude, a state of flexibility, a willingness to look for those things that we
believe are not there, as well as those we believe to be there.” It is for researchers
building on our sleuthing to evaluate whether what we’ve found is real or not,
but it’s not our focus in EDA. Regardless of the ultimate fate of what we’ve
found, EDA is vital to science as it challenges our dogmas about the relation-
ships among variables and it forces us to face the fact that our theories may
be wrong. It pushes science forwards and provides a framework for designing
new studies and experiments to confirm/refute what we’ve found. We’re the
detectives, not the judges.

3.2 Confirmatory data analysis

You can only use an observation once to confirm a hypothesis. As
soon as you use it more than once you’re back to doing exploratory
analysis. This means to do hypothesis confirmation you need to “pre-
register” (write out in advance) your analysis plan, and not deviate
from it even when you have seen the data. Grolemund & Wickham,
(2017)

3.3 A framework for EDA

Figure 3.2 shows a framework for data science presented in Grolemund & Wick-
ham (2017). This model is equally applicable for EDA.

Figure 3.2: Grolemund and Wickham (2017) model of data science.

3.4. EDA TOOLS 17

The first step in any analysis involves importing the data into the software.
Depending on how you import data into R, this step can be relatively instanta-
neous or it can take minutes.

The second step is tidying or reshaping your data. Grolemund & Wickham’s
criteria for tidy data are

1. Each variable must have its own column.
2. Each observation must have its own row.
3. Each value must have its own cell.

Note that this does not explicit refer to data being in a wide or long format.
Table 11 in Wickham (2014) in the Journal of Statistical Software, shown below
in Figure 3.3, highlights this issue. In this particular example, without knowing
what X and Y are (e.g., do they code for 1) measurements on two occasions? 2)
two items on the same assessment? 3) the height and weight of the participants?)
we do not know which format is the tidy one.

Figure 3.3: Table 11 from Wickham (2014). Which data set is tidy?

The next steps in EDA are iterative and they involve transforming variables
(e.g., changing type, rescaling, creating new ones, etc), visualizing these vari-
ables (e.g., marginal, bivariate, multivariate plots), and modeling the relation-
ships (can these variables predict/classify our outcomes).

Finally, once an interesting relationship has been discovered it must be com-
municated and any, arguably all, of these three would be communicated.

3.4 EDA tools

18 CHAPTER 3. EXPLORATORY DATA ANALYSIS

Chapter 4

Wrangling big data

Data wrangling is a general term that refers to transforming data. Wrangling
could involve subsetting, recoding, and transforming variables. For the work-
shop, we’ll also include summarizing data as wrangling as it fits within our
discussion of the data.table and sparklyr packages. However, summarizing
might more appropriately occur during data exploration/initial data analysis.

4.1 What is data.table?

From the data.table wiki

It is a high-performance version of base R’s data.frame with syntax
and feature enhancements for ease of use, convenience and program-
ming speed.

Its syntax is designed to be concise and consistent. It’s somewhat similar to base
R, but arguably less intuitive than tidyverse. We, and many others, would
say that data.table is one of the most underrated package out there.
If you’re familiar with SQL, then working with a data.table (DT) is concep-
tually similar to querying.

DT[i, j, by]

R: i j by
SQL: where | order by select | update group by

This should be read as take DT, subset (or order) rows using i, then calculate
j, and group by by. A graphical depiction of this “grammar”, created by one
of the developers of data.table, is shown in Figure 4.1.

19

20 CHAPTER 4. WRANGLING BIG DATA

Figure 4.1: Source: https://tinyurl.com/yyepwjpt.

The data.table package needs to be installed and loaded throughout the work-
shop.

install.packages("data.table")
library(data.table)

Throughout the workshop, we will write DT code as:

DT[i,
j,
by]

That is, we will use write separate lines for the i, j, and by DT statements.

4.1.1 Why use data.table over tidyverse?

If you’re familiar with R, then you might wonder why we are using DT and not
tidyverse? This has to do with memory management and speed.

#
Benchmark #1 - Reading in data
#

system.time({read.csv("data/pisa2015.csv")})
system.time({fread("data/pisa2015.csv", na.strings = "")})
system.time({read_csv("data/pisa2015.csv")})

#
Benchmark #2 - Calculating a conditional mean
#

#' Calculate proportion that strongly agreed to an item

4.1. WHAT IS DATA.TABLE? 21

Table 4.1: Comparing base R, data.table, and tidyverse.

Method Reading in data Conditional mean (1000 times)
base R 225.5 196.59
data.table 46.8 27.73
tidyverse 233.7 159.22

#' @param x likert-type item as a numeric vector
getSA <- function(x, ...) mean(x == "Strongly agree", ...)

read in data using fread()
pisa <- fread("data/pisa2015.csv", na.strings = "")

calculate conditional means
This is the proportion of students in each country that
strongly agree that
"I want top grades in most or all of my courses."
benchmark(
"baseR" = {
X <- aggregate(ST119Q01NA ~ CNTRYID, data = pisa, getSA, na.rm = TRUE)

},
"data.table" = {
X <- pisa[,

getSA(ST119Q01NA, na.rm = TRUE),
by = CNTRYID]

},
"tidyverse" = {
X <- pisa %>%
group_by(CNTRYID) %>%
summarize(getSA(ST119Q01NA, na.rm = TRUE))

},
replications = 1000)

Table 4.1 shows the results of this (relatively) unscientific minibenchmark. The
first column is the method, the second column is elapsed time (in seconds) to
read in the pisa data set (only once, though similar results/pattern is found if
repeated), and the third column is the elapsed time (in seconds) to calculate the
conditional mean 1000 times. We see that data.table is substantially faster
than base R and the tidyverse.
This extends to other data wrangling procedures (e.g., reshaping, recoding).
Importantly, tidyverse is not designed for big data but instead for data science,
more generally. From Grolemund & Wickham (2017)

“This book (R for Data Science) proudly focuses on small, in-

22 CHAPTER 4. WRANGLING BIG DATA

memory datasets. This is the right place to start because you
cannot tackle big data unless you have experience with small data.
The tools you learn in this book will easily handle hundreds of
megabytes of data, and with a little care you can typically use
them to work with 1-2 Gb of data. If you are routinely working
with larger data (10-100 Gb, say), you should learn more about
data.table. This book does not teach data.table because it has a
very concise interface which makes it harder to learn since it offers
fewer linguistic cues. But if you are working with large data, the
performance payoff is worth the extra effort required to learn it.”

4.2 Reading/writing data with data.table

The fread function should always be used when reading in large data sets and
arguably when ever you read in a CSV file. As shown above, read.csv and
readr::read_csv are painfully slow with big data.

Throughout the workshop we’ll be using the pisa data set. Therefore, we begin
by reading in (or importing) the data set

pisa <- fread("data/pisa2015.csv", na.strings = "")

To see the class the object pisa is and how big it is in R

class(pisa)

[1] "data.table" "data.frame"

print(object.size(pisa), unit = "GB")

3.5 Gb

We see that objects that are read in with fread are of class data.table and
data.frame. That means that methods for data.tables and data.frames will
work on these objects. We also see this data set uses up 3.5 Gb of memory
and this is all in the memory (RAM) not on the disk and allocated to memory
dynamically (this is what SAS does).

If we wanted to write pisa back to a CSV to share with a colleague or to use in
another program after some wrangling, then we should use the fwrite function
instead of write.csv:

4.2. READING/WRITING DATA WITH DATA.TABLE 23

fwrite(pisa, file = "pisa2015.csv")

The following image (Figure 4.2), taken from Matt Dowle’s blog, shows the
speed difference using common ways to save R objects and the differences in
sizes of these files.

Figure 4.2: Time to write an R object to a file. Source:
https://tinyurl.com/y366kvfx.

In the event that you did just want to read the data in using the fread()
function but then wanted to work with a tibble (tidyverse) or a data.frame, you
can convert the data set after its been read in:

pisa.tib <- tibble::as_tibble(pisa)
pisa.df <- as.data.frame(pisa)

However, I strongly recommend against this approach unless you have done some
amount of subsetting. If your data set is large enough to benefit appreciably by
fread then you should try and use the data.table package.
For the workshop, we have created two smaller versions of the pisa data set for
those of you with less beefy computers. The first is a file called region6.csv
and it was created by

region6 <- subset(pisa, CNT %in% c("United States", "Canada", "Mexico",
"B-S-J-G (China)", "Japan", "Korea",
"Germany", "Italy", "France", "Brazil",
"Colombia", "Uruguay", "Australia",
"New Zealand", "Jordan", "Israel", "Lebanon"))

fwrite(region6, file = "region6.csv")

These are the 6 regions that will be covered during data visualization and can
be used for the exercises and labs. The other file is a random sample of one
country from each regions for even less powerful computers, which can also be
used.

24 CHAPTER 4. WRANGLING BIG DATA

random6 <- subset(pisa, CNT %in% c("Mexico", "Uruguay", "Japan",
"Germany", "New Zealand", "Lebanon"))

fwrite(random6, file = "random6.csv")

4.2.1 Exercises

1. Read in the pisa data set. Either the full data set (recommended to have
> 8 Gb of RAM) or one of the smaller data sets.

4.3 Using the i in data.table

One of the first things we need to do when data wrangling is subsetting. Subset-
ting with data.table is very similar to base R but not identical. For example,
if we wanted to subset all the students from Mexico who are currently taking
Physics, i.e., they checked the item “Which course did you attend? Physics:
This year” (ST063Q01NA) we would do the following:

pisa[CNTRYID == "Mexico" & ST063Q01NA == "Checked"]

or (identical to base R)
subset(pisa, CNTRYID == "Mexico" & ST063Q01NA == "Checked")

Note that with data.table we do not need to use the $ operator to access a
variable in a data.table object. This is one improvement to the syntax of a
data.frame.
Typing the name of a data.table won’t print all the rows by default like a
data.frame. Instead it prints just the first and last 5 rows.

pisa

This is extremely helpful because when we have a object in R, it often defaults
to printing the entire object and this has the negative consequence of endless
output if we type just the name of a very large object.
Because we have 921 variables, data.table will still truncate this output. If
we want to view just the rows 10 through 25.

pisa[10:25]

However, with this many columns it is useless to print all of them and instead
we should focus on examining just the columns we’re interested in and we will
see how to do this when we examine the j operator.

4.4. USING THE J IN DATA.TABLE 25

Often when data wrangling we would like to perform multiple steps without
needing to create intermediate variables. This is known as chaining. Chaining
can be done in data.table via

DT[...
][...
][...
]

For example, if we wanted to just see rows 17 through 20 after we’ve done
previous subset, we can chain together these commands:

pisa[CNTRYID == "Mexico" & ST063Q01NA == "Checked"
][17:20]

When we’re wrangling data, it’s common and quite helpful to reorder rows. This
can be done using the order() function. First, we print the first 6 six elements
of the CNTRYID using the default ordering in the pisa data. Then we reorder
the data by country name in a descending order and then print the first 6 six
elements again using chaining.

head(pisa$CNTRYID)

[1] "Albania" "Albania" "Albania" "Albania" "Albania" "Albania"

pisa[order(CNTRYID, decreasing = TRUE)
][,
head(CNTRYID)]

[1] "Vietnam" "Vietnam" "Vietnam" "Vietnam" "Vietnam" "Vietnam"

4.3.1 Exercises

1. Subset all the Female students (ST004D01T) in Germany
2. How many female students are there in Germany?
3. The .N function returns the length of a vector/number of rows. Use chain-

ing with the .N function to answer Exercise 2.

4.4 Using the j in data.table

Using j we can select columns, summarize variables by performing actions on
the variables, and create new variables. If we wanted to just select the country
identifier:

26 CHAPTER 4. WRANGLING BIG DATA

pisa[,
CNTRYID]

However, this returns a vector not a data.table. If we wanted instead to return
a data.table:

pisa[,
list(CNTRYID)]

CNTRYID
1: Albania
2: Albania
3: Albania
4: Albania
5: Albania

519330: Argentina (Ciudad AutÃ³noma de Buenos)
519331: Argentina (Ciudad AutÃ³noma de Buenos)
519332: Argentina (Ciudad AutÃ³noma de Buenos)
519333: Argentina (Ciudad AutÃ³noma de Buenos)
519334: Argentina (Ciudad AutÃ³noma de Buenos)

pisa[,
.(CNTRYID)]

CNTRYID
1: Albania
2: Albania
3: Albania
4: Albania
5: Albania

519330: Argentina (Ciudad AutÃ³noma de Buenos)
519331: Argentina (Ciudad AutÃ³noma de Buenos)
519332: Argentina (Ciudad AutÃ³noma de Buenos)
519333: Argentina (Ciudad AutÃ³noma de Buenos)
519334: Argentina (Ciudad AutÃ³noma de Buenos)

The .() is data.table shorthand for list(). To subset more than one variable,
we can just add another variable within the .(). For example, if we also wanted
to select the science self-efficacy scale (SCIEEFF) as well, we do the following:

4.4. USING THE J IN DATA.TABLE 27

pisa[,
.(CNTRYID, SCIEEFF)]

CNTRYID SCIEEFF
1: Albania NA
2: Albania NA
3: Albania NA
4: Albania NA
5: Albania NA

519330: Argentina (Ciudad AutÃ³noma de Buenos) -0.8799
519331: Argentina (Ciudad AutÃ³noma de Buenos) 0.9802
519332: Argentina (Ciudad AutÃ³noma de Buenos) -0.5696
519333: Argentina (Ciudad AutÃ³noma de Buenos) -0.7065
519334: Argentina (Ciudad AutÃ³noma de Buenos) -0.3609

If we wanted see how many students took physics in Japan and Mexico, we
would do the following:

pisa[CNTRYID %in% c("Mexico", "Japan"),
table(ST063Q01NA)]

ST063Q01NA
Checked Not checked
4283 9762

Because data.table treats string variables as character variables by default we
see that when they are printed they are printed alphabetically, which in this
case is fine but is often unhelpful. We can chain together variables and create
an intermediate tense variable to get this in the correct format. However, when
we want to know how students in Mexico and Japan responded to “I get very
tense when I study for a test.”

pisa[CNTRYID %in% c("Mexico", "Japan"),
table(ST118Q04NA)]

ST118Q04NA
Agree Disagree Strongly agree Strongly disagree
4074 5313 1760 2904

We see that the output is unhelpful. Instead, we should convert the character
vector into a factor and we will create an intermediate variable called tense,
which we won’t add to our data set.

28 CHAPTER 4. WRANGLING BIG DATA

pisa[CNTRYID %in% c("Mexico", "Japan"),
.(tense = factor(ST118Q04NA, levels = c("Strongly disagree", "Disagree", "Agree", "Strongly agree")))
][,

table(tense)
]

tense
Strongly disagree Disagree Agree Strongly agree
2904 5313 4074 1760

Quick digression, in case you were wondering why base R reads strings in as
factors and not characters by default (which data.table and readr::read_csv
do),

pisa[, .(tense.as.char = ST118Q04NA,
tense.as.fac = factor(ST118Q04NA, levels = c("Strongly disagree", "Disagree", "Agree", "Strongly agree")))

][,
.(character = object.size(tense.as.char),
factor = object.size(tense.as.fac))

]

character factor
1: 4154984 bytes 2078064 bytes

Returning to the science self-efficacy scale, we can request summary information
for just these two countries:

pisa[CNTRYID %in% c("Mexico","Japan"),
.(xbar = mean(SCIEEFF, na.rm = T),
sigma = sd(SCIEEFF, na.rm = T),
minimum = min(SCIEEFF, na.rm = T),
med = median(SCIEEFF, na.rm = T),
maximum = max(SCIEEFF, na.rm = T))]

xbar sigma minimum med maximum
1: -0.08694 1.216 -3.756 -0.0541 3.277

We can create a quick plot this way, too. For example, if we wanted a create a
scatter plot of the science self-efficacy scale against the enjoyment of science scale
(JOYSCIE) for just these two countries and print the mean of the enjoyment of
science scale, we can do the following:

4.4. USING THE J IN DATA.TABLE 29

pisa[CNTRYID %in% c("Mexico","Japan"),
.(plot(y = SCIEEFF, x = JOYSCIE,

col = rgb(red = 0, green = 0, blue = 0, alpha = 0.3)),
xbar.joyscie = mean(JOYSCIE, na.rm = T))]

−2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2
3

JOYSCIE

S
C

IE
E

F
F

xbar.joyscie
1: 0.0614

This example is kind of silly but it shows that j is incredibly flexible and that
we can string together a bunch of commands using j without even needing to
do chaining.

Let’s say we need to recode “After leaving school did you: Eat dinner” from a
character variable to a numeric variable. We can do this with a series of if else
statements

table(pisa$ST078Q01NA)

##
No Yes
23617 373131

30 CHAPTER 4. WRANGLING BIG DATA

pisa[,
"eat.dinner" := sapply(ST078Q01NA,

function(x) {
if (is.na(x)) NA
else if (x == "No") 0L
else if (x == "Yes") 1L

})
][,
table(eat.dinner)
]

eat.dinner
0 1
23617 373131

In this example we created a new variable called eat.dinner using := the
function. The := syntax adds this variable directly to the DT. We also specified
the L to ensure the variable was treated as an integer and not a double, which
uses less memory.

We should create a function to do this recoding as there are lots of dichotomous
items in the pisa data set.

#' Convert a dichtomous item (yes/no) to numeric scoring
#' @param x a character vector containing "Yes" and "No" responses.
bin.to.num <- function(x){

if (is.na(x)) NA
else if (x == "Yes") 1L
else if (x == "No") 0L

}

Then use this function to create some variables as well as recoding gender to
give it a more intuitive variable name.

pisa[, `:=`
(female = ifelse(ST004D01T == "Female", 1, 0),
sex = ST004D01T,

At my house we have ...
desk = sapply(ST011Q01TA, bin.to.num),
own.room = sapply(ST011Q02TA, bin.to.num),
quiet.study = sapply(ST011Q03TA, bin.to.num),
computer = sapply(ST011Q04TA, bin.to.num),
software = sapply(ST011Q05TA, bin.to.num),

4.5. SUMMARIZING USING THE BY IN DATA.TABLE 31

internet = sapply(ST011Q06TA, bin.to.num),
lit = sapply(ST011Q07TA, bin.to.num),
poetry = sapply(ST011Q08TA, bin.to.num),
art = sapply(ST011Q09TA, bin.to.num),
book.sch = sapply(ST011Q10TA, bin.to.num),
tech.book = sapply(ST011Q11TA, bin.to.num),
dict = sapply(ST011Q12TA, bin.to.num),
art.book = sapply(ST011Q16NA, bin.to.num))]

Similarly, we can create new variables by combining pre-existing ones. In the
later data visualization section, we will use the following variables, so we will
create them now. The rowMeans function takes a data.frame, so we need to
subset the variables from the pisa data set and then convert it to a data.frame.
This is what the brackets are doing.

pisa[, `:=`
(math = rowMeans(pisa[, c(paste0("PV", 1:10, "MATH"))], na.rm = TRUE),
reading = rowMeans(pisa[, c(paste0("PV", 1:10, "READ"))], na.rm = TRUE),
science = rowMeans(pisa[, c(paste0("PV", 1:10, "SCIE"))], na.rm = TRUE))]

4.4.1 Exercises

1. The computer and software variables that were created above ask a student
whether they had a computer in their home that they can use for school
work (computer) and whether they had educational software in their home
(software). Find the proportion of students in the Germany and Uruguay
that have a computer in their home or have educational software.

2. For just female students, find the proportion of students who have their
own room (own.room) or a quiet place to study (quiet.study).

4.5 Summarizing using the by in data.table

With the by argument, we can now get conditional responses without the need
to subset. If we want to know the proportion of students in each country that
have their own room at home.

pisa[,
.(mean(own.room, na.rm = TRUE)),
by = .(CNTRYID)
][1:6,
]

32 CHAPTER 4. WRANGLING BIG DATA

CNTRYID V1
1: Albania NaN
2: Algeria 0.5188
3: Australia 0.9216
4: Austria 0.9054
5: Belgium 0.9154
6: Brazil 0.7498

Again, we can reorder this using chaining:

pisa[,
.(own.room = mean(own.room, na.rm = TRUE)),
by = .(country = CNTRYID)
][order(own.room, decreasing = TRUE)
][1:6
]

country own.room
1: Iceland 0.9863
2: Netherlands 0.9750
3: Norway 0.9738
4: Sweden 0.9559
5: Finland 0.9441
6: Germany 0.9379

What if we want to compare just the Canada and Iceland on the proportion of
students that have books of poetry at home (poetry) or and their mean on the
enjoyment of science by student’s biological sex?

pisa[CNTRYID %in% c("Canada", "Iceland"),
.(poetry = mean(poetry, na.rm = TRUE),
enjoy = mean(JOYSCIE, na.rm = TRUE)),

by = .(country = CNTRYID, sex = sex)]

country sex poetry enjoy
1: Canada Female 0.3632 0.29636
2: Canada Male 0.3124 0.40950
3: Iceland Female 0.7281 0.03584
4: Iceland Male 0.7011 0.30316

We see a strong country effect on poetry at home, with > 70% of Icelandic stu-
dents reporting poetry books at home and just above 30% in Canadian students
and we see that Canadian students enjoy science more than Icelandic students
and, male students, overall, enjoy science more than females.

4.5. SUMMARIZING USING THE BY IN DATA.TABLE 33

Let’s examine books of poetry at home by countries and sort it in descending
order.

pisa[,
.(poetry = mean(poetry, na.rm = TRUE)),
by = .(country = CNTRYID)
][order(poetry, decreasing = TRUE)
][1:6
]

country poetry
1: Kosovo 0.8353
2: Russian Federation 0.8046
3: Romania 0.8019
4: Georgia 0.7496
5: B-S-J-G (China) 0.7442
6: Estonia 0.7423

Iceland is in the top 10, while Canada is 59.

We can also write more complex functions and provide these to data.table.
For example, if wanted to fit a regression model to predict a student’s score on
science self-efficacy scale given their score on the enjoyment of science scale and
their sex for just the G7 countries (Canada, France, Germany, Italy, Japan, the
United Kingdom, and the United States), we can fit a multiple regression model
and return the intercept and slope terms.

get.params <- function(cntry){
mod <- lm(SCIEEFF ~ JOYSCIE + sex, cntry)
est.params <- list(int = coef(mod)[[1]], enjoy.slope = coef(mod)[[2]], sex.slope = coef(mod)[[3]])
return(est.params)

}

g7.params <- pisa[CNTRYID %in% c("Canada", "France", "Germany", "Italy",
"Japan", "United Kingdom", "United States"),

get.params(.SD),
by = .(CNTRYID)]

g7.params

CNTRYID int enjoy.slope sex.slope
1: Canada 0.009803 0.4371 0.21490
2: France -0.208699 0.4761 0.17743
3: Germany -0.019150 0.4317 0.17972
4: Italy -0.030880 0.3310 0.18832
5: Japan -0.353806 0.3914 0.04912

34 CHAPTER 4. WRANGLING BIG DATA

6: United Kingdom 0.009712 0.5183 0.18982
7: United States 0.096921 0.3908 0.15022

We see a fair bit of variability in these estimated parameters

4.5.1 Exercises

1. Calculate the proportion of students who have art in their home (art) and
the average age (AGE) of the students by gender.

2. Within a by argument you can discretize a variable to create a grouping
variable. Perform a median split for age within the by argument and assess
whether there are age difference associated with having your own room
(own.room) or a desk (desk).

4.6 Reshaping data

The data.table package provides some very fast methods to reshape data from
wide (the current format) to long format. In long format, a single test taker
will correspond to multiple rows of data. Some software and R packages require
data to be in long format (e.g., lme4 and nlme).

Let’s begin by creating a student ID and then subsetting this ID and the at-home
variables:

pisa$id <- 1:nrow(pisa)
athome <- subset(pisa, select = c(id, desk:art.book))

To transform the data to long format we melt the data.

athome.l <- melt(athome,
id.vars = "id",
measure.vars = c("desk", "own.room", "quiet.study", "lit",

"poetry", "art", "book.sch", "tech.book",
"dict", "art.book"))

athome.l

id variable value
1: 1 desk NA
2: 2 desk NA
3: 3 desk NA
4: 4 desk NA
5: 5 desk NA

4.6. RESHAPING DATA 35

5193336: 519330 art.book 1
5193337: 519331 art.book 0
5193338: 519332 art.book 1
5193339: 519333 art.book 0
5193340: 519334 art.book 0

We could have also allowed melt() to guess the format:

athome.guess <- melt(athome)

Warning in melt.data.table(athome): id.vars and measure.vars are internally
guessed when both are 'NULL'. All non-numeric/integer/logical type columns are
considered id.vars, which in this case are columns []. Consider providing at
least one of 'id' or 'measure' vars in future.

athome.guess

variable value
1: id 1
2: id 2
3: id 3
4: id 4
5: id 5

7270672: art.book 1
7270673: art.book 0
7270674: art.book 1
7270675: art.book 0
7270676: art.book 0

It guessed incorrectly. If id was set as a character vector, then it would have
guessed correctly this time. However, you should not allow it to guess the names
of the variables.

To go back to wide format we use the dcast() function.

athome.w <- dcast(athome.l,
id ~ variable)

Unlike other reshaping packages, data.table can also handle reshaping multiple
outcomes variables. More about reshaping with data.table is available here.

https://cran.r-project.org/web/packages/data.table/vignettes/datatable-reshape.html

36 CHAPTER 4. WRANGLING BIG DATA

4.7 The sparklyr package

The sparklyr package provides an R interface to Apache Spark and a complete
dplyr backend. Apache Spark “is a unified analytics engine for big data pro-
cessing, with built-in modules for streaming, SQL, machine learning and graph
processing”. Apache Spark can also be interfaced using the sparkR package
provided by Apache. See here and here for more details.

To use Apache Spark you will need Java 8 JDK installed. It can be installed
here. To begin with you need to install sparklyr and dplyr.

install.packages("sparklyr")
install.packages("dplyr")
library("sparklyr")
library("dplyr")

We then need to install Spark, which we can do from R.

spark_install()

Next, we need to setup a connection with Spark and we’ll be connecting to a
local install of Spark.

sc <- spark_connect(master = "local")

Then we need to copy the pisa data set to the Spark cluster. However, with this
large of a data set, this is a bad idea. We will run into memory issues during
the copying process. So, we’ll first subset the data before we do this.

pisa_sub <- subset(pisa, CNTRYID %in% c("Canada", "France", "Germany",
"Italy", "Japan", "United Kingdom",
"United States"),

select = c("DISCLISCI", "TEACHSUP", "IBTEACH", "TDTEACH",
"ENVAWARE", "JOYSCIE", "INTBRSCI", "INSTSCIE",
"SCIEEFF", "EPIST", "SCIEACT", "BSMJ", "MISCED",
"FISCED", "OUTHOURS", "SMINS", "TMINS",
"BELONG", "ANXTEST", "MOTIVAT", "COOPERATE",
"PERFEED", "unfairteacher", "HEDRES", "HOMEPOS",
"ICTRES", "WEALTH", "ESCS", "math", "reading",
"CNTRYID", "sex"))

We will use the selected variables in the labs and a description of these variables
can be seen below.

Now the data are ready to be copied into Spark.

https://spark.apache.org/docs/2.4.0/
https://spark.apache.org/docs/2.4.0/api/R/index.html
https://www.oracle.com/technetwork/java/jdk8-downloads-2133151.html

4.7. THE SPARKLYR PACKAGE 37

pisa_tbl <- copy_to(sc, pisa_sub, overwrite = TRUE)

In tidyverse, you can use the %>% to chain together commands or to pass data
to functions. With sparklyr, we can use the filter function instead of subset.
For example, if we just want to see the female students’ scores on these scales
for Germany, we would do the following:

pisa_tbl %>%
filter(CNTRYID == "Germany" & sex == "Female")

Source: spark<?> [?? x 32]
DISCLISCI TEACHSUP IBTEACH TDTEACH ENVAWARE JOYSCIE INTBRSCI INSTSCIE SCIEEFF
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 -0.234 -0.804 -0.608 -0.867 -0.536 -0.821 -0.550 NA NA
2 0.283 0.488 -0.157 -0.685 -0.805 -2.12 -1.13 -1.93 -2.83
3 0.700 1.45 0.988 0.525 0.171 -1.72 -0.225 -0.718 -2.09
4 0.0039 0.568 0.209 -0.0742 -0.234 -0.821 -0.0831 -0.826 -0.426
5 0.763 -0.450 0.535 -0.0057 -0.479 0.613 0.198 -0.304 -0.713
6 0.660 -0.461 0.647 0.450 -0.706 -0.631 -0.551 -1.93 -0.596
7 0.288 -1.82 0.430 -1.32 -0.0217 -0.576 -0.566 -0.670 0.748
8 0.835 -1.07 0.89 -0.610 0.256 2.16 0.341 1.33 -0.0804
9 1.32 -0.246 0.257 -0.867 -0.685 -0.152 -0.509 -0.778 -1.42
10 1.32 -1.29 0.308 -0.790 -0.385 -1.61 -0.399 -1.93 -1.05
... with more rows, and 23 more variables: EPIST <dbl>, SCIEACT <dbl>,
BSMJ <int>, MISCED <chr>, FISCED <chr>, OUTHOURS <int>, SMINS <int>,
TMINS <int>, BELONG <dbl>, ANXTEST <dbl>, MOTIVAT <dbl>, COOPERATE <dbl>,
PERFEED <dbl>, unfairteacher <int>, HEDRES <dbl>, HOMEPOS <dbl>,
ICTRES <dbl>, WEALTH <dbl>, ESCS <dbl>, math <dbl>, reading <dbl>,
CNTRYID <chr>, sex <chr>

You’ll notice the at the top it says #Source: spark<?>

If we wanted to calculate the average disciplinary climate in science classes
(DISCLISCI) by country and by sex and have it reorder by country than sex,
we can do the following:

pisa_tbl %>%
group_by(CNTRYID, sex) %>%
summarize(ave_disclip = mean(DISCLISCI, na.rm = TRUE)) %>%
arrange(CNTRYID, sex)

Source: spark<?> [?? x 3]
Groups: CNTRYID
Ordered by: CNTRYID, sex

38 CHAPTER 4. WRANGLING BIG DATA

CNTRYID sex ave_disclip
<chr> <chr> <dbl>
1 Canada Female 0.0110
2 Canada Male -0.0205
3 France Female -0.236
4 France Male -0.297
5 Germany Female 0.0915
6 Germany Male 0.0162
7 Italy Female 0.0708
8 Italy Male -0.137
9 Japan Female 0.916
10 Japan Male 0.788
... with more rows

We can also create new variables using the mutate function. If we want to get a
measure of home affluence, we could add home educational resources (HEDRES)
and home possessions (HOMEPOS)

pisa_tbl %>%
mutate(totl_home = HEDRES + HOMEPOS) %>%
group_by(CNTRYID) %>%
summarize(xbar = mean(totl_home, na.rm = TRUE))

Source: spark<?> [?? x 2]
CNTRYID xbar
<chr> <dbl>
1 United Kingdom 0.370
2 United States 0.113
3 Italy 0.324
4 Japan -1.30
5 France -0.332
6 Germany 0.279
7 Canada 0.430

On my computer, the Spark code is slightly faster than data.table, but not
by much. The real power of using Spark is that we can use its machine learning
functions. However, if you’re familiar with tidyverse (dplyr) syntax, then
sparklyr is a package that is worth investigating for data wrangling with big
data sets.

4.8 Lab

This afternoon when we discuss supervised learning, we’ll ask you to develop
some models to predict the response to the question Do you expect your child
will go into a ?” (PA032Q03TA).

4.8. LAB 39

1. Recode this variable so that a “Yes” is 1 and a “No” is a -1 and save the
variable as sci_car.

2. Calculate descriptives for this variable by sex and country. Specifically,
the proportion of test takers whose parents said “Yes” or 1.

After you’ve done this, spend some time investigating the following variables

Label Description
DISCLISCI Disciplinary climate in science classes (WLE)
TEACHSUP Teacher support in a science classes of students choice (WLE)
IBTEACH Inquiry-based science teaching an learning practices (WLE)
TDTEACH Teacher-directed science instruction (WLE)
ENVAWARE Environmental Awareness (WLE)
JOYSCIE Enjoyment of science (WLE)
INTBRSCI Interest in broad science topics (WLE)
INSTSCIE Instrumental motivation (WLE)
SCIEEFF Science self-efficacy (WLE)
EPIST Epistemological beliefs (WLE)
SCIEACT Index science activities (WLE)
BSMJ Student’s expected occupational status (SEI)
MISCED Mother’s Education (ISCED)
FISCED Father’s Education (ISCED)
OUTHOURS Out-of-School Study Time per week (Sum)
SMINS Learning time (minutes per week) -
TMINS Learning time (minutes per week) - in total
BELONG Subjective well-being: Sense of Belonging to School (WLE)
ANXTEST Personality: Test Anxiety (WLE)
MOTIVAT Student Attitudes, Preferences and Self-related beliefs: Achieving motivation (WLE)
COOPERATE Collaboration and teamwork dispositions: Enjoy cooperation (WLE)
PERFEED Perceived Feedback (WLE)
unfairteacher Teacher Fairness (Sum)
HEDRES Home educational resources (WLE)
HOMEPOS Home possessions (WLE)
ICTRES ICT Resources (WLE)
WEALTH Family wealth (WLE)
ESCS Index of economic, social and cultural status (WLE)
math Students’ math score in PISA 2015
reading Students’ reading score in PISA 2015

and then do the following using data.table and/or sparklyr:

3. Means and standard deviations (sd) for the variables that you think will
be most predictive of sci_car.

40 CHAPTER 4. WRANGLING BIG DATA

4. Calculate these same descriptives by groups (by sci_car and by sex).

5. Calculate correlations between these variables and sci_car,

6. Create new variables

• Discretize the math and reading variables using the OECD means
(490 for math and 493) and code them as 1 (at or above the mean)
and -1 (below the mean), but do in the data.table way without
using the $ operator.

• Calculate the correlation between these variables and the list of vari-
ables above.

7. Chain together a set of operations

• For example, create an intermediate variable that is the average of
JOYSCIE and INTBRSCI, and then calculate the mean by country
by sci_car through chaining.

8. Transform variables, specifically recode MISCED and FISCED from char-
acters to numeric variables.

9. Examine other variables in the pisa data set that you think might be
predictive of PA032Q03TA.

Chapter 5

Visualizing big data

One of the most effective ways to explore big data, interpret variables, and
communicate results obtained from big data analyses to varied audiences is
through data visualization. When we deal with big data, we can benefit from
data visualizations in many ways, such as:

• understanding the distributional characteristics of variables,
• detecting data entry issues,
• identifying outliers in the data,
• understanding relationships among variables,
• selecting suitable variables for data analysis (a.k.a., feature extraction),
• examining the outcomes of predictive models (e.g., accuracy and overfit),

and
• communicating the results to various audiences.

Developing effective visualizations requires identifying the goals and design of
data analysis clearly. Sometimes we may already know the answers for some
questions about the data; in other cases, we may want to explore further and
understand the data in order to generate better insights into the next steps of
data analysis. In this process, we need to consider many elements, such as types
of variables to be used, axes, labels, legends, colors, and so on. Furthermore, if
we aim to present the visualization to a particular audience, then we also need
to consider the usability and interpretability of the visualization for the target
audience.

The development of an effective data visualization typically includes the follow-
ing steps:

1. Determine the goal of data visualization (e.g., exploring data, relation-
ships, model outcomes)

41

42 CHAPTER 5. VISUALIZING BIG DATA

2. Prepare the data (e.g., clean, organize, and transform data)
3. Identify the ideal visualization tool based on the goal of data visualization
4. Produce the visualization
5. Interpret the information in the visualization and present it to your target

audience

Figure 5.1: Chart suggestions (Source: <https://extremepresentation.com/>)

Figure 5.1 shows some suggestions for visualizing data based on the type of
variables and the purpose of the visualization. In R, almost all of these vi-
sualizations can be created very easily, although preparing the data for these
visualizations is sometimes quite tedious.
In this section of our session, we will review data visualization tools in R that
can help us organize big data, interpret variables, and identify potential vari-
ables for predictive models. The first part will focus on data visualizations
using the ggplot2 package. Furthermore, we will use other R packages (e.g.,
GGally, ggExtra, and ggalluvial) that expand the capabilities of ggplot2 even
further (also see https://exts.ggplot2.tidyverse.org/gallery/ for more extensions
of ggplot2). In the second part, we will discuss web-based, interactive visual-
izations and dashboards using plotly.
As we review data visualization tools, we will also demonstrate how to use each
visualization tool in R and produce sample plots and graphics using the pisa

https://ggplot2.tidyverse.org/
http://ggobi.github.io/ggally/#ggally
https://www.ggplot2-exts.org/ggExtra.html
http://corybrunson.github.io/ggalluvial/
https://exts.ggplot2.tidyverse.org/gallery/
https://plot.ly/r/

5.1. INTRODUCTION TO GGPLOT2 43

dataset. Furthermore, we will ask you to work on short exercises where you
will need to use the functions and packages presented in this section in order to
generate your own plots and visualizations using the pisa dataset.

Before we begin, let’s install and load all of the R packages that we will use in
this section:

Install and load the packages one by one.
install.packages("ggplot2")
install.packages("GGally")
install.packages("ggExtra")
install.packages("ggalluvial")
install.packages("plotly")

library("ggplot2")
library("GGally")
library("ggExtra")
library("ggalluvial")
library("plotly")

Or, just simply run the following to install and load all packages:
dataviz_packages <- c("ggplot2", "GGally", "ggExtra", "ggalluvial", "plotly")
install.packages(dataviz_packages)
lapply(packages, require, character.only = TRUE)

Load already installed packages
library("data.table")

we will also use cowplot later in this session.
Please install it but do not load it for now.
install.packages("cowplot")

5.1 Introduction to ggplot2

This section will demonstrate how to visualise your big data using ggplot2
and other R packages that rely on ggplot2. We use ‘ggplot2 because it is
the most elegant and versatile visualization package in R. Also, it implements
a simple grammar of graphics for building a variety of visualizations for either
small or large data. This enables creating high-quality plots for publications
and presentations easily, with minimal amounts of adjustments and tweaking.

A typical ggplot2 template ranges from a few layers to many layers, depending
on the complexity of the visualization of interest. Layers generate a plot and

44 CHAPTER 5. VISUALIZING BIG DATA

plot transformations within the plot. We can combine multiple layers using the
+ operator. Therefore, plots are built step by step by adding new elements in
each layer. A simple ggplot2 template is shown below:

ggplot(data = my_data,
mapping = aes(x = var1, y = var2)) +

geom_function()

where the ggplot function uses the two variables (var1 and var2) from a
dataset (my_data), and draws a new plot based on a particular geom function
(geom_function). Selecting the variables to be plotted is done through the
aesthetic mapping (via the aes function). Depending on the aesthetic mapping
of interest, we can split the plot, add colors by a group variable, change the
labels for each axis, change the font size, and so on. The ‘ggplot2 package
offers many geom functions to draw different types of plots:

• geom_point for scatter plots, dot plots, etc.
• geom_boxplot for boxplots
• geom_line for trend lines, time series, etc.

In addition, functions such as theme_bw() and theme() enable adjusting the
theme elements (e.g., font size, font type, background colors) for a given plot.
As we create plots in our examples, we will use some of these theme elements
to make our plots look nicer.

An important caveat in visualizing big data is that the size of the dataset (es-
pecially the number of rows) and complexity level of the plot (e.g., additional
lines, colors, facets) will influence how quickly and successfully ggplot2 can
render the desired plot. Nobody can absorb the meaning of thousands of data
points presented on a single visualization. Therefore, in some cases we will need
to find a way to cluster or reduce the magnitude of items to visualize before we
render the visualization. Typically we can achieve this by:

• taking smaller, sometimes random, samples from our big data, or
• summarizing our big data using categorical, group variables (e.g., gender,

grade, year).

5.2 Marginal plots

We can use marginal plots to examine the distributions of individual variables in
a large dataset. A typical marginal plot is a scatter plot that also has histograms

5.2. MARGINAL PLOTS 45

Table 5.1: Variables to be used in the data visualizations

Variable Description Variable Description
CNT Country BELONG Sense of belonging to school
OECD OECD membership EMOSUPS Parents emotional support
CNTSTUID Student ID HOMESCH ICT use outside of school for schoolwork
W_FSTUWT Student weight in the PISA database ENTUSE ICT use outside of school leisure
ST001D01T Grade level ICTHOME ICT available at home
ST004D01T Gender (female/male) ICTSCH ICT availability at school
ST011Q04TA Possessing a computer at home WEALTH Family wealth
ST011Q05TA Possessing educational software at home PARED Highest parental education in years of schooling
ST011Q06TA Having internet access at home TMINS Total learning time per week
ST071Q02NA Additional time spent for learning math ESCS Index of economic, social and cultural status
ST071Q01NA Additional time spent for learning science TDTEACH Teacher-directed science instruction
ST123Q02NA Whether parents support educational efforts and achievements IBTEACH Inquiry based science instruction
ST082Q01NA Prefering working as part of a team to working alone TEACHSUP Teacher support in science classes
ST119Q01NA Wanting top grades in most or all courses SCIEEFF Science self-efficacy
ST119Q05NA Wanting to the best student in class math Students math scores in PISA 2015
ANXTEST Test anxiety reading Students reading scores in PISA 2015
COOPERATE Enjoying cooperation science Students science scores in PISA 2015

or boxplots in the margins of the x- and y-axes. In this section, first we will
create histograms and boxplots for the variables in the pisa dataset. Then, we
will review other options where we will combine multiple variables and different
types of plots in a single visualization.

To demonstrate data visualizations, we will first take a subset of the pisa dataset
by selecting some countries and some variables of interest. The selected variables
are shown below.

Here we filter our big data based on a list of countries (we called country),
select the variables that we have just identified in Table 5.1 and the reading,
math, and science scales we created earlier.

country <- c("United States", "Canada", "Mexico", "B-S-J-G (China)", "Japan",
"Korea", "Germany", "Italy", "France", "Brazil", "Colombia", "Uruguay",
"Australia", "New Zealand", "Jordan", "Israel", "Lebanon")

dat <- pisa[CNT %in% country,
.(CNT, OECD, CNTSTUID, W_FSTUWT, sex, female,
ST001D01T, computer, software, internet,
ST011Q05TA, ST071Q02NA, ST071Q01NA, ST123Q02NA,
ST082Q01NA, ST119Q01NA, ST119Q05NA, ANXTEST,
COOPERATE, BELONG, EMOSUPS, HOMESCH, ENTUSE,
ICTHOME, ICTSCH, WEALTH, PARED, TMINS, ESCS,

46 CHAPTER 5. VISUALIZING BIG DATA

TEACHSUP, TDTEACH, IBTEACH, SCIEEFF,
math, reading, science)

]

Next, we create additional variables by recoding some of the existing variables.
The goal is to create some numerical variables out of the character variables in
case we want to use them in the modeling stage.

Let's create additional variables that we will use for visualizations
dat <- dat[, `:=` (

New grade variable
grade = (as.numeric(sapply(ST001D01T, function(x) {
if(x=="Grade 7") "7"
else if (x=="Grade 8") "8"
else if (x=="Grade 9") "9"
else if (x=="Grade 10") "10"
else if (x=="Grade 11") "11"
else if (x=="Grade 12") "12"
else if (x=="Grade 13") NA_character_
else if (x=="Ungraded") NA_character_}))),
Total learning time as hours
learning = round(TMINS/60, 0),
Regions for selected countries
Region = (sapply(CNT, function(x) {
if(x %in% c("Canada", "United States", "Mexico")) "N. America"

else if (x %in% c("Colombia", "Brazil", "Uruguay")) "S. America"
else if (x %in% c("Japan", "B-S-J-G (China)", "Korea")) "Asia"
else if (x %in% c("Germany", "Italy", "France")) "Europe"
else if (x %in% c("Australia", "New Zealand")) "Australia"
else if (x %in% c("Israel", "Jordan", "Lebanon")) "Middle-East"
}))

)]

Now, let’s see the number of rows in the final dataset and print the first few
rows of the selected variables.

N count for the final dataset
dat[,.N] # 158,061 rows

[1] 158061

Let's preview the final data
head(dat)

5.2. MARGINAL PLOTS 47

CNT OECD CNTSTUID W_FSTUWT sex female ST001D01T computer software
1: Australia Yes 3610676 28.20 Female 1 Grade 10 1 1
2: Australia Yes 3611874 28.20 Female 1 Grade 10 1 1
3: Australia Yes 3601769 28.20 Female 1 Grade 10 1 1
4: Australia Yes 3605996 28.20 Female 1 Grade 10 1 1
5: Australia Yes 3608147 33.45 Male 0 Grade 10 1 1
6: Australia Yes 3610012 33.45 Male 0 Grade 10 1 1
internet ST011Q05TA ST071Q02NA ST071Q01NA ST123Q02NA ST082Q01NA
1: 1 Yes 0 1 Disagree Disagree
2: 1 Yes 1 1 Agree Agree
3: 1 Yes NA NA Agree Strongly disagree
4: 1 Yes 5 7 Strongly agree Strongly disagree
5: 1 Yes 1 1 Agree Agree
6: 1 Yes 2 2 Agree Agree
ST119Q01NA ST119Q05NA ANXTEST COOPERATE BELONG EMOSUPS HOMESCH
1: Agree Strongly agree -0.1522 0.2085 0.5073 -2.2547 -0.1686
2: Agree Disagree 0.2594 -0.2882 -0.8021 -0.2511 0.0302
3: Strongly agree Disagree 2.5493 -1.2109 -2.4078 -1.9895 1.2836
4: Strongly agree Strongly agree 0.2563 0.3950 -0.3381 1.0991 -0.0498
5: Agree Disagree 0.4517 -1.3606 -0.5050 -1.3298 -0.3355
6: Agree Agree 0.5175 0.4252 -0.0099 -0.4263 0.1567
ENTUSE ICTHOME ICTSCH WEALTH PARED TMINS ESCS TEACHSUP TDTEACH IBTEACH
1: -0.7369 4 5 0.0592 12 1400 0.4078 NA NA NA
2: -0.1047 9 6 0.7605 12 1100 0.4500 0.3574 0.0615 0.2208
3: -1.5403 11 10 -0.1220 11 1960 -0.5889 -1.0718 -0.6102 -0.2198
4: 0.0342 10 7 0.9314 15 2450 0.6498 0.6375 0.7979 -0.0282
5: 0.2309 NA 7 0.7905 15 1400 0.7675 0.8213 0.1990 1.1477
6: 0.6896 10 5 0.7054 15 1400 1.1151 NA NA NA
SCIEEFF math reading science grade learning Region
1: NA 545.9 586.5 589.6 10 23 Australia
2: -0.4041 511.6 570.8 557.2 10 18 Australia
3: -0.9003 478.6 570.0 569.5 10 33 Australia
4: 1.2395 506.1 531.1 529.0 10 41 Australia
5: -0.0746 481.9 506.5 504.2 10 23 Australia
6: NA 455.0 456.5 472.6 10 23 Australia

We want to see the distributions of the science scores across the 17 countries
in our final dataset. The first line with ggplot creates a layout for our figure,
the second line draws a box plot using geom_boxplot, the fourth line with
labs creates labels of the axes, and the last line with theme_bw removes the
default theme with a grey background and activates the dark-on-light ggplot2
theme – which is much better for publications and presentations (see https:
//ggplot2.tidyverse.org/reference/ggtheme.html for a complete list of themes
available in ggplot2).

https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html

48 CHAPTER 5. VISUALIZING BIG DATA

ggplot(data = dat, mapping = aes(x = CNT, y = science)) +
geom_boxplot() +
labs(x=NULL, y="Science Scores") +
theme_bw()

200

400

600

800

AustraliaB−S−J−G (China)Brazil CanadaColombiaFranceGermany Israel Italy Japan Jordan Korea LebanonMexicoNew ZealandUnited StatesUruguay

S
ci

en
ce

 S
co

re
s

The resulting plot is not necessarily nice because all the country names on the
x-axis seem to be squeezed together and thus some of the country names are
not visible on the x-axis. To correct this, we may want to flip the coordinates
of the plot and use country names on the y-axis instead. The coord_flip()
function allows us to achieve that very easily.

ggplot(data = dat,
mapping = aes(x = CNT, y = science)) +

geom_boxplot() +
labs(x=NULL, y="Science Scores") +
coord_flip() +
theme_bw()

5.2. MARGINAL PLOTS 49

Australia

B−S−J−G (China)

Brazil

Canada

Colombia

France

Germany

Israel

Italy

Japan

Jordan

Korea

Lebanon

Mexico

New Zealand

United States

Uruguay

200 400 600 800
Science Scores

Next, I want to show the mean values in the boxplots since the line in the
middle represents the median, not the mean. To achieve this, we first calculate
the means by countries.

means <- dat[,
.(science = mean(science)),
by = CNT]

Now we can use means to add a point into each boxplot to show the mean
score by countries. We will use stat_summary() along with the options colour
= "blue", geom = "point" to create a blue point for the mean. In addition,
given that the average science score in PISA 2015 was 493 across all participating
countries (see PISA 2015 Results in Focus for more details), we can add a
reference line into our plot to identify the average score, which would then
allow us to visually examine which countries are above or below the average
score. To achieve this, we use geom_hline function and specify where it should
intersect the plot (i.e., yintercept = 493). We also want the reference line to
be a red, dashed-line with a thickness level of 1 – to make it more visible in the
plot. Finally, to facilitate the interpretation of the plot, we want the boxplots
to be ordered based on the average scores for each country and thus we add
reorder(CNT, science) into the mapping.

https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf

50 CHAPTER 5. VISUALIZING BIG DATA

ggplot(data = dat,
mapping = aes(x = reorder(CNT, science), y = science)) +

geom_boxplot() +
stat_summary(fun.y = mean, colour = "blue", geom = "point",

shape = 18, size = 3) +
labs(x=NULL, y="Science Scores") +
coord_flip() +
geom_hline(yintercept = 493, linetype="dashed", color = "red", size = 1) +
theme_bw()

Lebanon

Brazil

Jordan

Mexico

Colombia

Uruguay

Israel

Italy

United States

Australia

France

Germany

New Zealand

Korea

Canada

B−S−J−G (China)

Japan

200 400 600 800
Science Scores

Now let’s add some colors to our figure based on the region where each country
is located. In order to do this, we use the region variable to fill the boxplots
with color, using fill = Region.

ggplot(data = dat,
mapping = aes(x = reorder(CNT, science), y = science, fill = Region)) +

geom_boxplot() +
labs(x=NULL, y="Science Scores") +
coord_flip() +
geom_hline(yintercept = 493, linetype="dashed", color = "red", size = 1) +
theme_bw()

5.2. MARGINAL PLOTS 51

Lebanon

Brazil

Jordan

Mexico

Colombia

Uruguay

Israel

Italy

United States

Australia

France

Germany

New Zealand

Korea

Canada

B−S−J−G (China)

Japan

200 400 600 800
Science Scores

Region

Asia

Australia

Europe

Middle−East

N. America

S. America

5.2.1 Exercise

Create a plot of math scores over countries with different colors based on region.
You need to modify the R code below by replacing geom_boxplot with:

• geom_point(aes(color = Region)), and then
• geom_violin(aes(color = Region)).

How long did it take to create both plots? Which one is a better way to visualize
this type of data?

ggplot(data = dat,
mapping = aes(x = reorder(CNT, math), y = math, fill = Region)) +

geom_boxplot() +
labs(x=NULL, y="Math Scores") +
coord_flip() +
geom_hline(yintercept = 490, linetype="dashed", color = "red", size = 1) +
theme_bw()

We can also create histograms (or density plots) for a particular variable and
split the plot into multiple plots by using a categorical, group variable. In

52 CHAPTER 5. VISUALIZING BIG DATA

the following example, we use x = Region in the mapping in order to identify
different regions in the distribution of the science scores. In addition, we use
facet_grid(. ~ sex) to generate separate histograms by gender. Note that
we also added title = "Science Scores by Gender and Region" as a title
in the labs function.

ggplot(data = dat,
mapping = aes(x = science, fill = Region)) +

geom_histogram(alpha = 0.5, bins = 50) +
labs(x = "Science Scores", y = "Count",

title = "Science Scores by Gender and Region") +
facet_grid(. ~ sex) +
theme_bw()

Female Male

200 400 600 800 200 400 600 800

0

1000

2000

3000

4000

Science Scores

C
ou

nt

Region

Asia

Australia

Europe

Middle−East

N. America

S. America

Science Scores by Gender and Region

If we are interested in visualizing multiple variables, plotting each variable in-
dividually can be time consuming. Therefore, we can use the ggpairs function
from the GGally package to build a more complex, diagnostic plot for multiple
variables.

In the following example, we plot reading, science, and math scores as well as
gender (i.e., sex) in the same plot. Because our dataset is quite large, plotting
all the data points would result in a highly complex plot where most data
points would overlap on each other. Therefore, we will take a random sample
of 500 cases from each region defined in the data, save this smaller dataset as

5.2. MARGINAL PLOTS 53

dat_small, and use this dataset inside the ggpairs function. We colorize each
variable by region (using mapping = aes(color = Region)). The resulting
plot shows density plots for the continuous variables (by region), a stacked bar
chart for gender, and box plots for the continuous variables by region and gender.

Random sample of 500 students from each region
dat_small <- dat[,.SD[sample(.N, min(500,.N))], by = Region]

ggpairs(data = dat_small,
mapping = aes(color = Region),
columns = c("reading", "science", "math", "sex"),
upper = list(continuous = wrap("cor", size = 2.5))
)

Corr: 0.927***
 Asia: 0.918***
 Australia: 0.919***
 Europe: 0.896***

Middle−East: 0.908***
 N. America: 0.941***
 S. America: 0.932***

Corr: 0.877***
 Asia: 0.871***
 Australia: 0.869***
 Europe: 0.839***

Middle−East: 0.867***
 N. America: 0.888***
 S. America: 0.864***

Corr: 0.938***
 Asia: 0.930***
 Australia: 0.941***
 Europe: 0.925***

Middle−East: 0.910***
 N. America: 0.942***
 S. America: 0.932***

reading science math sex

reading
science

m
ath

sex

200 400 600 200 400 600 800 200 400 600 Female Male

0.000

0.001

0.002

0.003

0.004

200

400

600

200

400

600

0

50

100

0

50

100

Interpretation:

• What can we say about the regions based on the plots above?
• Do you see any major gender differences for reading, science, or math?
• What is the relationship among reading, science, or math?

54 CHAPTER 5. VISUALIZING BIG DATA

5.3 Conditional plots

When we deal with continuous variables, an effective way to understand the
relationship between the variables is to produce conditional plots, such as scat-
terplots, dotplots, and bubble charts. Simple scatterplots in R can be created
using plot(var1, var2, data = name_of_dataset). Using the extended ca-
pabilities of ggplot2 via the ggExtra package, we can combine histograms and
density plots with scatterplots and visualize them together.

In the following example, we first create a scatterplot of learning time per week
and science scores using ggplot. We use geom_point to draw a plot with
points and geom_smooth(method = "loess") to add a regression line with loess
smoothing (i.e., Locally Estimated Scatterplot Smoothing). We save this plot
as p1 and then pass it to ggMarginal to transform the plot into a marginal scat-
terplot. Inside ggMarginal, we use type = "histogram" to create histograms
for learning time per week and science scores on the x and y axes of the plot.
Note that as the plot is created, you may see some warning messages, such as
“Removed 750 rows containing missing values”, because some variables have
missing rows in the dataset.

p1 <- ggplot(data = dat_small,
mapping = aes(x = learning, y = science)) +

geom_point() +
geom_smooth(method = "loess") +
labs(x = "Weekly Learning Time", y = "Science Scores") +
theme_bw()

Replace "histogram" with "boxplot" or "density" for other types
ggMarginal(p1, type = "histogram")

5.3. CONDITIONAL PLOTS 55

200

400

600

0 10 20 30 40 50
Weekly Learning Time

S
ci

en
ce

 S
co

re
s

We can also distinguish male and female students in the plot and create a
scatterplot of learning time and science scores with densities by gender. To
achieve this, we add colour = sex into the mapping of ggplot and change
the type of plot to type = "density" in ggMarginal. In addition, we use
groupColour = TRUE, groupFill = TRUE inside ggMarginal to use separate
colors for each gender in the density plots.

p2 <- ggplot(data = dat_small,
mapping = aes(x = learning, y = science,

colour = sex)) +
geom_point() +
geom_smooth(method = "loess") +
labs(x = "Weekly Learning Time", y = "Science Scores") +
theme_bw() +
theme(legend.position = "bottom",

legend.title = element_blank())

ggMarginal(p2, type = "density", groupColour = TRUE, groupFill = TRUE)

56 CHAPTER 5. VISUALIZING BIG DATA

200

400

600

0 10 20 30 40 50
Weekly Learning Time

S
ci

en
ce

 S
co

re
s

Female Male

Interpretation:

• What can we say about the relationship between weekly learning time and
science scores?

• Do you see any gender differences?

Now let’s incorporate more variables into the plot. This time we are not going
to use marginal plots. Instead, we will create a regular scatterplot but add
other layers to represent additional variables. In the following example, we
examine the relationship between students’ weekly learning time (learning) and
science scores (science) across regions (region) and gender (sex). Adding fill =
Region into the mapping will allow us to draw regression lines by regions, while
adding aes(colour = sex) into geom_point will allow us to use different colors
for male and female students in the plot.

ggplot(data = dat_small,
mapping = aes(x = learning, y = science, fill = Region)) +

geom_point(aes(colour = sex)) +
geom_smooth(method = "loess") +
labs(x = "Weekly Learning Time", y = "Science Scores") +
theme_bw()

5.3. CONDITIONAL PLOTS 57

200

400

600

0 10 20 30 40 50
Weekly Learning Time

S
ci

en
ce

 S
co

re
s

sex

Female

Male

Region

Asia

Australia

Europe

Middle−East

N. America

S. America

The resulting scatterplot is nice but it is hard to compare the results clearly
between gender groups and regions. To improve the interpretability of the
plot, we will use the faceting option. This will allow us to split the scatterplot
into multiple plots based on gender and region. In the following example, we
examine the relationship between students’ learning time and science scores
across regions and gender. We use facet_grid(sex ~ Region) to split the
plots into multiple rows based on gender and multiple columns based on region.

ggplot(data = dat_small,
mapping = aes(x = learning, y = science)) +

geom_point() +
geom_smooth(method = "loess") +
labs(x = "Weekly Learning Time", y = "Science Scores") +
theme_bw() +
theme(legend.title = element_blank()) +
facet_grid(sex ~ Region)

58 CHAPTER 5. VISUALIZING BIG DATA

Asia Australia Europe Middle−East N. America S. America

F
em

ale
M

ale

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

200

400

600

200

400

600

Weekly Learning Time

S
ci

en
ce

 S
co

re
s

Interpretation:

• Do you see any regional differences?
• Is there any interaction between gender and region?

5.3.1 Exercise

Create a scatterplot of socio-economic status (ESCS) and math scores (math)
across regions (region) and gender (sex). Use geom_smooth(method = "lm")
to draw linear regression lines (instead of loess smoothing). Do you think that
the relationship between ESCS and math changes across gender and regions?

5.4 Plots for examining correlations

For a simple examination of the correlation between two continuous variables,
we could just create a scatterplot matrix. In the following plot, we will create
a scatterplot matrix of family wealth (WEALTH) and science scores (science) by
gender (sex) and region (region). We will use region for facetting and gender
for coloring the data points.

5.4. PLOTS FOR EXAMINING CORRELATIONS 59

ggplot(data = dat_small,
mapping = aes(x = WEALTH, y = science)) +

geom_point(aes(color = sex)) +
facet_wrap(~ Region) +
labs(x = "Family Wealth", y = "Science Scores") +
theme_bw() +
theme(legend.title = element_blank())

Middle−East N. America S. America

Asia Australia Europe

−5.0 −2.5 0.0 2.5 −5.0 −2.5 0.0 2.5 −5.0 −2.5 0.0 2.5

200

400

600

200

400

600

Family Wealth

S
ci

en
ce

 S
co

re
s

Female

Male

A more effective way for identifying correlated variables in a dataset for further
statistical analyses (also known as feature extraction) is to create a correlation
matrix plot. The ggcorr() function from the GGally package provides a quick
way to make a correlation matrix plot. In the following example, we will create
a correlation matrix plot for science, math, reading, ICT possession at home,
socio-economic status, family wealth, highest parental education, science self-
efficacy, sense of belonging to school, and grade level.

ggcorr(data = dat[,.(science, math, reading, ICTHOME, ESCS,
WEALTH, PARED, SCIEEFF, BELONG, grade)],

method = c("pairwise.complete.obs", "pearson"),
label = TRUE, label_size = 4)

60 CHAPTER 5. VISUALIZING BIG DATA

0.9 0.9 0.2 0.4 0.3 0.3 0.2 0.1 0.2

0.9 0.2 0.4 0.4 0.3 0.1 0.1 0.2

0.2 0.4 0.3 0.3 0.1 0.1 0.3

0.6 0.7 0.4 0.1 0.1 0.1

0.7 0.8 0.1 0.1 0.2

0.4 0.1 0.1 0.2

0.1 0.1 0.1

0.1 0

0.1

science

math

reading

ICTHOME

ESCS

WEALTH

PARED

SCIEEFF

BELONG

grade

−1.0

−0.5

0.0

0.5

1.0

5.5 Plots for examining means by group

Let’s assume that we want to see average science scores by gender and country.
First, we need to find the average science scores by country and gender and save
them in a new dataset. Below we calculate average science scores and N counts
by both gender and country and save the dataset as science_summary.

science_summary <- dat[,
.(Science = mean(science, na.rm = TRUE),
Freq = .N),

by = c("sex", "CNT")]

head(science_summary)

sex CNT Science Freq
1: Female Australia 498.0 7163
2: Male Australia 499.4 7367
3: Male Brazil 400.8 11068
4: Female Brazil 396.3 12073
5: Female Canada 515.3 10022
6: Male Canada 517.3 10036

5.5. PLOTS FOR EXAMINING MEANS BY GROUP 61

Now, we can create a simple bar graph summarizing the average science perfor-
mance by gender and country, using our new dataset.

ggplot(data = science_summary,
mapping = aes(x = CNT, y = Science, fill = sex)) +

geom_bar(stat = "identity", position = "dodge") +
coord_flip() +
labs(x = "", y = "Science Scores", fill = "Gender") +
theme_bw()

Australia

B−S−J−G (China)

Brazil

Canada

Colombia

France

Germany

Israel

Italy

Japan

Jordan

Korea

Lebanon

Mexico

New Zealand

United States

Uruguay

0 200 400
Science Scores

Gender

Female

Male

Despite their easiness and simplicity, bar graphs are not necessarily visually
appealing. Thus, we will create a bubble chart to visualize the same information
in a different way. A bubble chart is essentially a weighted scatterplot where a
third variable determines the size of the dots in the plot. In the following bubble
chart, we use Freq (i.e., number of students from each country) to determine
the size of the dots in the plot, using size = Freq.

ggplot(data = science_summary,
mapping = aes(x = CNT, y = Science, size = Freq, fill = sex)) +

geom_point(shape = 21) +
coord_flip() +
theme_bw() +
labs(x = NULL, y = "Science Scores", fill = "Gender",

62 CHAPTER 5. VISUALIZING BIG DATA

size = "Frequency")

Australia

B−S−J−G (China)

Brazil

Canada

Colombia

France

Germany

Israel

Italy

Japan

Jordan

Korea

Lebanon

Mexico

New Zealand

United States

Uruguay

400 450 500 550
Science Scores

Frequency

2500

5000

7500

10000

Gender

Female

Male

Interpretation:

• Which countries seem to have the highest numbers of students?
• Which countries seem to have the larger achievement gap in science be-

tween male and female students?

We can also create a dot plot, which is very similar to the bubble chart when
one of the variables is categorical, to convey the same information even more
effectively. As you will see, this is a more polished version of the bubble chart
with additional titles and subtitles.

ggplot(data = science_summary, mapping = aes(x = CNT, y = Science, fill = sex)) +
geom_line(aes(group = CNT)) + geom_point(aes(size = Freq), shape = 21) + geom_hline(yintercept = 493,
linetype = "dashed", color = "red", size = 1) + labs(x = NULL, y = "PISA Science Scores",
fill = "Gender", size = "Frequency", title = "Science Performance by Country and Gender") +
coord_flip() + theme_bw() + theme(plot.title = element_text(size = 18, margin = ggplot2::margin(b = 10)),
plot.subtitle = element_text(size = 10, color = "darkslategrey"))

5.6. PLOTS FOR ORDINAL/CATEGORICAL VARIABLES 63

Australia

B−S−J−G (China)

Brazil

Canada

Colombia

France

Germany

Israel

Italy

Japan

Jordan

Korea

Lebanon

Mexico

New Zealand

United States

Uruguay

400 450 500 550
PISA Science Scores

Frequency

2500

5000

7500

10000

Gender

Female

Male

Science Performance by Country and Gender

5.6 Plots for ordinal/categorical variables

An alluvial plot can be used to summarize relationships between multiple cat-
egorical variables. In the following example, we use region (Region), gender
(sex), and a survey item regarding whether parents support educational ef-
forts and achievements (ST123Q02NA). We first create a new dataset called
dat_alluvial to have frequency counts by region, gender, and our survey item.
Because the survey item includes missing values, we label them as “missing” and
then recode this variable as a factor with re-ordered levels.

dat_alluvial <- dat[,
.(Freq = .N),
by = c("Region", "sex", "ST123Q02NA")
][,
ST123Q02NA := as.factor(ifelse(ST123Q02NA == "", "Missing", ST123Q02NA))
]

levels(dat_alluvial$ST123Q02NA) <- c("Strongly disagree", "Disagree", "Agree",
"Strongly agree", "Missing")

head(dat_alluvial)

Region sex ST123Q02NA Freq

64 CHAPTER 5. VISUALIZING BIG DATA

1: Australia Female Disagree 232
2: Australia Female Strongly disagree 2773
3: Australia Female Strongly agree 5981
4: Australia Male Strongly disagree 3209
5: Australia Male Strongly agree 5626
6: Australia Male Missing 186

Unlike the previous visualizations, there is a new layer called geom_alluvium,
which allows creating an alluvial plot using the ggplot function. We use
aes(fill = sex) inside geom_alluvium to differentiate the frequencies by gen-
der.

StatStratum <- StatStratum
ggplot(data = dat_alluvial,

aes(axis1 = Region, axis2 = ST123Q02NA, y = Freq)) +
scale_x_discrete(limits = c("Region", "Parents supporting\nachievement"),

expand = c(.1, .05)) +
geom_alluvium(aes(fill = sex)) +
geom_stratum() +
geom_text(stat = "stratum", label.strata = TRUE) +
labs(x = "Demographics", y = "Frequency", fill = "Gender") +
theme_bw()

0

50000

100000

150000

Region Parents supporting
achievement

Demographics

F
re

qu
en

cy Gender

Female

Male

Interpretation:

5.7. INTERACTIVE PLOTS WITH PLOTLY 65

• Does parents’ support for educational efforts and achievement vary by
region and gender?

5.6.1 Exercise

Create an alluvial plot for the survey item (ST119Q01NA) of whether students
want top grades in most or all courses by region (Region) and gender (sex).
Below we create the summary dataset (dat_alluvial2) for this plot. Use this
dataset to draw the alluvial plot plot. How should we interpret the plot (e.g.,
for each region)?

dat_alluvial2 <- dat[,
.(Freq = .N),
by = c("Region", "sex", "ST119Q01NA")
][,
ST119Q01NA := as.factor(ifelse(ST119Q01NA == "", "Missing", ST119Q01NA))]

levels(dat_alluvial2$ST119Q01NA) <- c("Strongly disagree", "Disagree", "Agree",
"Strongly agree", "Missing")

5.7 Interactive plots with plotly

Using the plotly package, we can make more interactive visualizations. The
ggplotly function from the plotly package transforms a ggplot2 plot into an
interactive plot in the HTML format. In the following example, we first save
a boxplot as p3 and then insert this plot into the plotly function in order to
generate an interactive plot. As we hover the pointer over the plot area, the
plot shows the min, max, q1, q3, and median values.

p3 <- ggplot(data = dat,
mapping = aes(x = CNT, y = science, fill = Region))+

geom_boxplot() +
facet_grid(. ~ sex)+
labs(x = NULL, y = "Science Scores", fill = "Region") +
coord_flip() +
theme_bw()

ggplotly(p3)

66 CHAPTER 5. VISUALIZING BIG DATA

200 400 600 800

Australia

B-S-J-G (China)

Brazil

Canada

Colombia

France

Germany

Israel

Italy

Japan

Jordan

Korea

Lebanon

Mexico

New Zealand

United States

Uruguay

200 400 600 800

Region

Asia

Australia

Europe

Middle-East

N. America

S. America

Science Scores

Female Male

Similarly, we can transform our bubble chart into an interactive plot using
ggplotly().

p4 <- ggplot(data = science_summary,
mapping = aes(x = CNT, y = Science, size = Freq, fill = sex)) +

geom_point(shape = 21) +
coord_flip() +
theme_bw() +
labs(x = NULL, y = "Science Scores", fill = "Gender",

size = "Frequency")

ggplotly(p4)

5.7. INTERACTIVE PLOTS WITH PLOTLY 67

400 450 500 550

Australia

B-S-J-G (China)

Brazil

Canada

Colombia

France

Germany

Israel

Italy

Japan

Jordan

Korea

Lebanon

Mexico

New Zealand

United States

Uruguay Frequency

Gender

Female

Male

Science Scores

We can also use the plot_ly function to create interactive visualizations, with-
out using ‘ggplot2. In the following example, we create a scatterplot of reading
scores and science scores where the color of the dots will be based on region
and the size of the dots will be based on student weight in the PISA database.
Because the resulting figure is interactive, we can click on the legend and hide
some regions as we review the plot. In addition, we add a hover text (text =
~paste("Reading: ", reading, '
Science:', science)) into the plot.
As we hover on the plot, it will show us a label with reading and science scores.

plot_ly(data = dat_small,
x = ~reading, y = ~science, color = ~Region,
size = ~W_FSTUWT,
type = "scatter",
text = ~paste("Reading: ", reading, '
Science:', science))

68 CHAPTER 5. VISUALIZING BIG DATA

200 400 600

200

300

400

500

600

700

Asia

Australia

Europe

Middle-East

N. America

S. America

reading

s
c
ie

n
c
e

Lastly, we create a bar chart showing average science scores by region and
gender. We will also include error bars in the plot. First we will create a
new dataset science_region with the mean and standard deviation values by
gender and region. Then, we will use this summary dataset in plot_ly() to
draw a bar chart for females and save it as p5. Finally, we will add a new layer
for males using add_trace.

science_region <- dat[, .(Science = mean(science, na.rm = TRUE),
SD = sd(science, na.rm = TRUE)),

by = c("sex", "Region")]

p5 <- plot_ly(data = science_region[which(science_region$sex == 'Female'),],
x = ~Region,
y = ~Science,
type = 'bar',
name = 'Female',
error_y = ~list(array = SD, color = 'black'))

add_trace(p5, data = science_region[which(science_region$sex == 'Male'),],
name = 'Male')

5.7. INTERACTIVE PLOTS WITH PLOTLY 69

Asia Australia Europe Middle-East N. America S. America
0

100

200

300

400

500

600

Female

Male

Region

S
c
ie

n
c
e

Check out the plotly website to see more interesting examples of interactive
visualizations and dashboards.

5.7.1 Exercise

Replicate the science-by-region histogram below as a density plot and useplotly
to make it interactive. You will need to replace geom_histogram(alpha = 0.5,
bins = 50) with geom_density(alpha = 0.5). Repeat the same process by
changing alpha = 0.5 to alpha = 0.8. Which version is better for examining
the science score distribution?

ggplot(data = dat,
mapping = aes(x = science, fill = Region)) +

geom_histogram(alpha = 0.5, bins = 50) +
labs(x = "Science Scores", y = "Count",

title = "Science Scores by Gender and Region") +
facet_grid(. ~ sex) +
theme_bw()

https://plot.ly/r/

70 CHAPTER 5. VISUALIZING BIG DATA

5.8 Customizing visualizations

Although ggplot2 has many ways to customize visualizations, sometimes mak-
ing a plot ready for a publication or a presentation becomes quite tedious.
Therefore, we recommend the cowplot package – which is capable of quickly
transforming plots created with ggplot2 into publication-ready plots. The
cowplot package provides a nice theme that requires a minimum amount of
editing for changing sizes of axis labels, plot backgrounds, etc. In addition, we
can add custom annotations to ggplot2 plots using cowplot (see the cowplot
vignette for more details).
On of the plots that we created earlier was a bubble chart by gender and fre-
quency.

ggplot(data = science_summary,
mapping = aes(x = CNT, y = Science, size = Freq, fill = sex)) +

geom_point(shape = 21) +
coord_flip() +
theme_bw() +
labs(x = NULL, y = "Science Scores", fill = "Gender",

size = "Frequency")

Australia

B−S−J−G (China)

Brazil

Canada

Colombia

France

Germany

Israel

Italy

Japan

Jordan

Korea

Lebanon

Mexico

New Zealand

United States

Uruguay

400 450 500 550
Science Scores

Frequency

2500

5000

7500

10000

Gender

Female

Male

After we load the cowplot package and remove theme_bw from the plot, it will
change as follows:

https://cran.r-project.org/web/packages/cowplot/index.html
https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html
https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html

5.8. CUSTOMIZING VISUALIZATIONS 71

library("cowplot")

plot1 <-
ggplot(data = science_summary,

mapping = aes(x = CNT, y = Science, size = Freq, fill = sex)) +
geom_point(shape = 21) +
coord_flip() +
labs(x = NULL, y = "Science Scores", fill = "Gender",

size = "Frequency")

plot1

Australia

B−S−J−G (China)

Brazil

Canada

Colombia

France

Germany

Israel

Italy

Japan

Jordan

Korea

Lebanon

Mexico

New Zealand

United States

Uruguay

400 450 500 550
Science Scores

Frequency

2500

5000

7500

10000

Gender

Female

Male

The cowplot package removes the gray background, gridlines, and make the
axes more visible. If we want to save the plot, we can export it using save_plot.

save_plot("plot1.png", plot1,
base_aspect_ratio = 1.6)

Also, cowplot enables combining two or more plots into one graph via the
function plot_grid:

72 CHAPTER 5. VISUALIZING BIG DATA

plot2 <-
ggplot(data = science_summary,

mapping = aes(x = CNT, y = Science, fill = sex)) +
geom_bar(stat = "identity", position = "dodge") +
coord_flip() +
labs(x = "", y = "Science Scores", fill = "Gender")

plot_grid(plot1, plot2, labels = c("A", "B"))

Australia

B−S−J−G (China)

Brazil

Canada

Colombia

France

Germany

Israel

Italy

Japan

Jordan

Korea

Lebanon

Mexico

New Zealand

United States

Uruguay

400 450 500 550
Science Scores

Frequency

2500

5000

7500

10000

Gender

Female

Male

A

Australia

B−S−J−G (China)

Brazil

Canada

Colombia

France

Germany

Israel

Italy

Japan

Jordan

Korea

Lebanon

Mexico

New Zealand

United States

Uruguay

0 200 400
Science Scores

Gender

Female

Male

B

If you decide not to use the cowplot theme, you can just simply unload the
package as follows:

detach("package:cowplot", unload=TRUE)

5.9 Lab

We want to examine the relationships between reading scores and technology-
related variables in the dat dataset that we created earlier. Create at least two
visualizations (either static or interactive) using some of the variables shown
below:

5.9. LAB 73

• Region
• sex
• grade
• HOMESCH
• ENTUSE
• ICTHOME
• ICTSCH

You can focus on a particular country or region or use the entire dataset for
your visualizations.

74 CHAPTER 5. VISUALIZING BIG DATA

Chapter 6

Modeling big data

Figure 6.1: Source: http://tinyurl.com/y95rd2jx

6.1 Introduction to machine learning

Machine learning is automating the automation – Dr. Pedro Domin-
gos

Machine Learning (ML) is an important aspect of modern business appli-
cations and research nowadays. Through advanced mathematical models, ML

75

http://tinyurl.com/y95rd2jx
https://homes.cs.washington.edu/~pedrod/
https://homes.cs.washington.edu/~pedrod/

76 CHAPTER 6. MODELING BIG DATA

algorithms can figure out how to perform important tasks either intuitively or
by generalizing from existing observations (i.e., sample data). This is often
feasible and cost-effective where manual programming is not. ML algorithms
utilize sample data – also known as training data – to make decisions without
being specifically programmed to make those decisions. As more data points
become available, ML algorithms assist computer systems in progressively im-
proving their performance so that more ambitious and complex problems can be
tackled. As a result, ML has begun to be widely used in computer science and
other fields, including educational measurement and psychometrics. Some ML
applications include web search, spam filters for e-mails, recommender systems
(e.g., Netflix and YouTube), credit scoring, fraud detection, stock trading, and
drug design.

Some examples of ML in educational testing and psychometrics include au-
tomated essay scoring applications, personalized learning systems, intelligent
tutoring systems, and learning analytics applications to inform instructors, stu-
dents, and other stakeholders.

6.1.1 Focus of machine learning

As an inductive approach, ML focuses on making accurate predictions based on
existing data, NOT necessarily hypothesis testing (see Figure 6.2).

Figure 6.2: Deduction vs. induction (Source:
<https://tinyurl.com/yxtt8afm>)

Also, ML aims to learn from the data to tell you how to utilize the variables for

6.1. INTRODUCTION TO MACHINE LEARNING 77

a prediction scenario, NOT to give you output for a program that you wrote
(see Figure 6.3).

Figure 6.3: Traditional programming vs. machine learning

6.1.2 Some concepts underlying machine learning

Here we want to introduce some important ML concepts, based on Dr. Pedro
Domingos of University of Washington titled “A Few Useful Things to Know
about Machine Learning”. According to Dr. Domingos, all machine learning
algorithms generally consist of combinations of three elements:
(Statistical) Learning from data = Representation + Evaluation +
Optimization

1. Representation: A classifier is a system that inputs (typically) a vector
of discrete and/or continuous feature values (i.e., predictors) and outputs
a single discrete or continuous value (i.e., dependent or outcome variable).
To build a ML application, a classifier must be represented in some for-
mal language that the computer can handle. Then we should consider
questions such as “how do we present the input data?”, “how do we select
what features/variables to use?”, and so on. We will review some of these
classifiers today – such as decision trees, support vector machines, and
logistic regression.

2. Evaluation: An evaluation function is necessary for distinguishing good
classifiers from bad ones. The evaluation function used internally by the

https://homes.cs.washington.edu/~pedrod/
https://homes.cs.washington.edu/~pedrod/
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

78 CHAPTER 6. MODELING BIG DATA

algorithm may differ from the external one that we want the classifier to
optimize. Common evaluation methods include accuracy/error rate, mean
squared or absolute error (for continuous outcomes) and precision, accu-
racy, recall (i.e., sensitivity), and specificity (for categorical outcomes).

3. Optimization: An optimization method is necessary for searching among
the classifiers in the language for the highest-scoring (i.e., most precise)
one. The choice of optimization technique is key to the efficiency of the
learner. Some optimization methods include greedy search, gradient de-
scent, and linear programming.

6.1.3 Model development

There are several elements that impact the success of model development in
ML:

• Amount of data: Although there are many sophisticated ML algorithms
available to researchers and practitioners, they all rely on the same thing
– data. Selecting clever ML algorithms that are capable of making the
most of the available data and computing resources is important. How-
ever, without enough data, even the most sophisticated ML algorithms
will return poor-quality results. Nowadays enormous amounts of data are
available, but there is not enough time to process all of it.

You can have data without information, but you cannot have infor-
mation without data. – Daniel Keys Moran

• Data quality: Data quality is the essence of ML applications. ML is not
magic; it can’t get something out of nothing. The better quality data we
provide, the more reliable and precise results we can obtain.

More data beats clever algorithms, but better data beats more data.
– Peter Norvig

• Data wrangling: Big data are often not in a form that is amenable
to learning, but we can construct new features from the data – which is
typically where most of the effort in a ML project goes. Data wrangling is
the most essential skill for building a successful ML model. The processes
of gathering data, integrating it, cleaning it, and pre-processing it are very
time-consuming. Furthermore, ML is not a one-time process of building
data and running a model to learn from the data, but rather an iterative
process of running the model, analyzing the results, modifying the data,
tweaking the model, and repeating.

https://en.wikipedia.org/wiki/Daniel_Keys_Moran
https://en.wikipedia.org/wiki/Peter_Norvig

6.1. INTRODUCTION TO MACHINE LEARNING 79

Data scientists spend 60% of their time on cleaning and organizing
data. – Gil Press

• Feature engineering: Feature engineering is the key to building a suc-
cessful ML model. Feature engineering refers to selecting and/or creating
the most useful variables in a big dataset for a given purpose (e.g., classi-
fication). If there are many independent features that correlate well with
the outcome variable, then the learning process is easy. If, however, the
outcome variable is a very complex function of the features, then learning
doesn’t occur very easily. Categorical features nearly always need some
treatment where we can use one hot encoding (similar to dummy cod-
ing) to convert such features into a form that could be provided to ML
algorithms to do a better job in prediction.

Applied machine learning is basically feature engineering. – Andrew
Ng

6.1.4 Model evaluation

ML models that focus on classification problems are often evaluated based on
classification accuracy, sensitivity, specificity, and precision (see Figure 6.4).

Figure 6.4: Confusion matrix for classification problems

ML models that focus on regression problems are evaluated based on the fit-
ted regression line and actual data points, as shown in Figure 6.5. Using the
difference between observed data points (blue) and predicted data points (red),
we can creata a summary index of error – such as mean absolute error, mean
squared error, and root mean squared error.

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#7dfde9af6f63
https://en.wikipedia.org/wiki/Andrew_Ng
https://en.wikipedia.org/wiki/Andrew_Ng

80 CHAPTER 6. MODELING BIG DATA

Figure 6.5: A demonstration of simple linear regression

1. Mean Absolute Error (MAE):

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑
𝑗=1

|𝑦𝑖 − ̂𝑦𝑖|

where 𝑁 is the number of observations, 𝑦𝑖 is the observed value of the outcome
variable for observation 𝑖, and ̂𝑦𝑖 is the predicted value for the outcome variable
for observation 𝑖.

2. Mean Squared Error (MSE):

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑
𝑗=1

(𝑦𝑖 − ̂𝑦𝑖)2

3. Root Mean Squared Error (MSE):

𝑅𝑀𝑆𝐸 =
√

𝑀𝑆𝐸

Figure 6.6 shows a typical machine learning pipeline that illustrates the flow of
the model development and evaluation elements.

6.1. INTRODUCTION TO MACHINE LEARNING 81

Figure 6.6: A typical machine learning pipeline

6.1.5 Key issues

In ML applications, generalization refers to how well the concepts learned by a
machine learning model apply to specific examples (i.e., new data that the model
hasn’t seen yet). Therefore, the fundamental goal of ML is to build a model
that can generalize beyond the examples seen in training data. Regardless of
how many observations we have in training, the model will produce inaccurate
results for at least some observations in the test data. This is primarily because
we are very unlikely to see those exact examples from training data again when
testing the model with new (or validation) data. That is, getting highly precise
results in training data is easy, whereas generalizing the model beyond training
data is hard. Therefore, most machine learning beginners would easily fall for
the illusion of success with training data and then get immediately disappointed
with the results from new data.

When we talk about how well a ML model learns from training data and gen-
eralizes to new data, there are two key issues: overfitting and underfitting.

• Overfitting refers to a model that models the training data too well. It
happens when a ML model learns the detail and noise in the training data
to the extent that it negatively impacts the performance of the model on
new data. In the context of automated essay scoring, overfitting would

82 CHAPTER 6. MODELING BIG DATA

occur when all the essays (including words, punctuation, word combina-
tions) from the training data are used to maximize the accuracy of the
essay scores. Because the model would be very specific to the words or
phrases used by students in the training data, the same ML model would
yield very poor results when the essay is given to a different group of stu-
dents who write essays quite differently (e.g., English language learners).
Overfitting typically occurs with ML models that implement nonpara-
metric and nonlinear function to learn from the data (e.g., neural network
models).

• Underfitting refers to a ML model that can neither model the training
data nor generalize to new data – which means that our ML attempt
was a complete failure. An underfit machine learning model is not a
suitable model and will be obvious as it will have poor performance on the
training data. The obvious remedy to underfitting is to try alternate ML
algorithms. Nevertheless, it does provide a good contrast to the problem
of overfitting.

Both overfitting and underfitting may cause poor performance of ML algorithms;
but by far the most common problem in ML applications is overfitting. There
are two important techniques that we can use when evaluating ML algorithms
to limit overfitting:

1. Use a resampling technique to estimate model accuracy: The most
popular resampling technique is k-fold cross validation. This method al-
lows us to train and test our model k-times on different subsets of training
data and build up an estimate of the performance of a ML model on un-
seen data. Using cross validation is a gold standard in ML applications
for estimating model accuracy on unseen data (see Figure 6.7).

2. Hold back a validation dataset: If we already have new data (or
very large data from which we can spare enough data), using a validation
dataset is also an excellent practice.

In conclusion, we ideally want to select a model at the sweet spot between
underfitting and overfitting. As we use more data for training the model, we
can review the performance of the ML algorithm over time. We can plot both
the outcome on the training data and the outcome on the test data we have
held back from the training process.

Over time, as the ML algorithm learns, the prediction error for the model on
the training data goes down and so does the error on the test data. If we train
the model for too long, the performance on the training data may continue
to decrease because the model is overfitting and learning irrelevant details and
noise in the training dataset. At the same time, the error for the test set starts

6.2. TYPES OF MACHINE LEARNING 83

Figure 6.7: An illustration of *k*-fold cross validation

to increase again as the model’s ability to generalize decreases. The sweet spot
is the point just before the error on the test data starts to increase where the
model has good accuracy on both the training data and the unseen test data.

6.2 Types of machine learning

In general, ML applications can be categorized in two ways:

1. Supervised learning vs. unsupervised learning
2. ML for classification problems vs. ML for regression problems

In supervised learning, ML algorithms are given training data catego-
rized as input variables and output variables from which to learn patterns
and make inferences on previously unseen data (testing data). The goal of
supervised learning is for machines to replicate a mapping function we have
identified for them (for example, which students passed or failed the test at
the end of the semester). Provided enough examples, ML algorithms can
learn to recognize and respond to patterns in data without explicit instruc-
tions. Supervised machine learning is typically used for classification tasks,

84 CHAPTER 6. MODELING BIG DATA

in which we segment the data inputs into categories (e.g., for pass/fail de-
cisions, strongly agree/agree/neutral/disagree/strongly disagree), and regres-
sion tasks, in which the output variable is a real value, such as a test score. The
accuracy of supervised learning algorithms typically is easy to evaluate, because
there is a known, “ground truth”” (output variable) to which the algorithm is
optimizing (see Figure 6.8).

Figure 6.8: How supervised machine learning works

Unsupervised machine learning is an approach to training ML in which the
algorithm is given only input data, from which it identifies patterns on its
own. The goal of unsupervised learning is for algorithms to identify underlying
patterns or structures in data to better understand it. Unsupervised learning is
closer to how humans learn most things in life: through observation, experience,
and analogy. Unsupervised learning is best used for clustering problems – for
example, grouping examinees based on their response times and engagement
with the items during testing in order to detect anomalies. It is also useful for
“association”, in which ML algorithms independently discover rules in data; for
example, students who tend to answer math items slowly also tend to answer
science items slowly. The accuracy of unsupervised learning is harder to evalu-
ate, as there is no predefined ground truth the algorithm is working toward (see
Figure 6.9).

Figure 6.10 below shows most widely used algorithms for both supervised and

6.2. TYPES OF MACHINE LEARNING 85

Figure 6.9: How unsupervised machine learning works

unsupervised ML applications. The last column in Figure 6.10 refers to “rein-
forcement learning” – a more specific type of machine learning – but we will not
be covering reinforcement learning in this training session.

86 CHAPTER 6. MODELING BIG DATA

Figure 6.10: Widely used machine learning algorithms

Chapter 7

Supervised Machine
Learning - Part I

7.1 Decision Trees

Decision trees (also known as classification and regression trees – CART) are an
important type of algorithm for predictive modeling and machine learning. In
general, the CART approach relies on stratifying or segmenting the prediction
space into a number of simple regions. In order to make regression-based or
classification-based predictions, we use the mean or the mode of the training
observations in the region to which they belong.

A typical layout of a decision tree model looks like a binary tree. The tree
has a root node that represents the starting point of the prediction. There are
also decision nodes where we split the data into a smaller subset and leaf nodes
where we make a decision. Each node represents a single input variable (i.e.,
predictor) and a split point on that variable. The leaf nodes of the tree contain
an output variable (i.e., dependent variable) for which we make a prediction.
Predictions are made by walking the splits of the tree until arriving at a leaf
node and output the class value at that leaf node. Figure 7.1 shows an example
of a decision tree model in the context of a binary dependent variable (accepting
or not accepting a new job offer).

Although decision trees are not highly competitive with the advanced supervised
learning approaches, they are still quite popular in ML applications because
they:

• are fast to learn and very fast for making predictions.
• are often accurate for a broad range of problems.
• do not require any special preparation for the data.

87

88 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

Figure 7.1: An example of decision tree approach

• are highly interpretable compared to more complex ML methods (e.g.,
neural networks).

• are very easy to explain to people as the logic of decision trees closely
mirrors human decision-making.

• can be displayed graphically, and thus are easily interpreted even by a
non-expert.

In a decision tree model, either categorical and continuous variables can be
used as the outcome variable depending on whether we want classification trees
(categorical outcomes) or regression trees (continuous outcomes). Decision trees
are particularly useful when predictors interact well with the outcome variable
(and with each other).

7.1.1 Regression trees

In regression trees, the following two steps will allow us to create a decision tree
model:

1. We divide the prediction space (with several predictors) into distinct and
non-overlapping regions, using a top-down, greedy approach – which is also
known as recursive binary splitting. We begin splitting at the top of the
tree and then go down by successively splitting the prediction space into
two new branches. This step is completed by dividing the prediction space
into high-dimensional rectangles and minimizing the following equation:

7.1. DECISION TREES 89

𝑅𝑆𝑆 = ∑
𝑖∶𝑥𝑖∈𝑅1(𝑗,𝑠)

(𝑦𝑖 − ̂𝑦𝑅1
)2 + ∑

𝑖∶𝑥𝑖∈𝑅2(𝑗,𝑠)
(𝑦𝑖 − ̂𝑦𝑅2

)2

where 𝑅𝑆𝑆 is the residual sum of squares, 𝑦𝑖 is the observed predicted variable
for the observations 𝑖 = (1, 2, 3, … , 𝑁) in the training data, 𝑗 is the index for
the 𝑗𝑡ℎ split, 𝑠 is the cutpoint for a given predictor 𝑋𝑖, ̂𝑦𝑅1

is the mean response
for the observations in the 𝑅1(𝑗, 𝑠) region of the training data and ̂𝑦𝑅2

is the
mean response for the observations in the 𝑅2(𝑗, 𝑠) region of the training data.

2. Once all the regions 𝑅1, … , 𝑅𝐽 have been created, we predict the response
for a given observation using the mean of the observations in the region
of the training data to which that observation belongs.

7.1.2 Classification trees

A classification tree is very similar to a regression tree, except that the decision
tree predicts a qualitative (i.e., categorical) variable rather than a quantitative
(i.e., continuous and numerical) variable. The procedure for splitting the data
in multiple branches is the same as the one we described for the regression tree
above. The only difference is that instead of using the mean of the observations
in the region of the training data, we assume that each observation belongs
to the mode class (i.e., most commonly occurring class) of the observations in
the region of the training data. Also, rather than minimizing 𝑅𝑆𝑆, we try
to minimize the classification error rate, which is the fraction of the training
observations in a given region that do not belong to the most common class:

𝐸 = 1 − 𝑚𝑎𝑥𝑘(̂𝑝𝑚𝑘)

where ̂𝑝𝑚𝑘 is the proportion of training observations in the 𝑚𝑡ℎ region that are
from the 𝑘𝑡ℎ class. However, only classification error is NOT good enough to
split decision trees. Therefore, there are two other indices for the same purpose:

1. The Gini index:

𝐺 =
𝐾

∑
𝑘=1

̂𝑝𝑚𝑘(1 − ̂𝑝𝑚𝑘)

where 𝐾 represents the number of classes. This is essentially a measure of total
variance across the 𝐾 classes. A small Gini index indicates that a node contains
predominantly observations from a single class.

2. Entropy:

90 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝐾

∑
𝑘=1

̂𝑝𝑚𝑘log ̂𝑝𝑚𝑘

Like the Gini index, the entropy will also take on a small value if the 𝑚𝑡ℎ node
is pure.

When building a classification tree, either the Gini index or the entropy is
typically used to evaluate the quality of a particular split, as they are more
sensitive to the changes in the splits than the classification error rate. Typically,
the Gini index is better for minimizing misclassification, while the Entropy is
better for exploratory analysis.

7.1.3 Pruning decision trees

Sometimes decision trees end up having many branches and nodes, yielding a
model that overfits the training data and poorly fits the validation or test data.
To eliminate this overfitting problem, we may prefer to have a smaller and more
interpretable tree with fewer splits at the cost of a little bias. One strategy
to achieve this is to grow a very large tree and then prune it back in order to
obtain a subtree.

Given a subtree, we can estimate its error in the test or validation data. How-
ever, estimating the error for every possible subtree would be computationally
too expensive. A more feasible way is to use cost complexity pruning by getting
a sequence of trees indexed by a nonnegative tuning parameter 𝛼 – which also
known as the complexity parameter (cp). The cp parameter controls a trade-off
between the subtree’s complexity and its fit to the training data. As the cp
parameter increases from zero, branches in the decision tree get pruned in a
nested and predictable fashion. To determine the ideal value for the cp param-
eter, we can try different values of cp in a validation set or use cross-validation
(e.g., K-fold approach). By checking the error (using either RSS, or Gini index,
or Entropy depending on the prediction problem) for different sizes of decision
trees, we can determine the ideal point to prune the tree.

7.2 Decision trees in R

In the following example, we will build a classification tree model, using the
science scores from PISA 2015. Using a set of predictors in the pisa dataset,
we will predict whether students are above or below the mean scale score for
science. The average science score in PISA 2015 was 493 across all participating
countries (see PISA 2015 Results in Focus for more details). Using this score as
a cut-off value, we will first create a binary variable called science_perf where

https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf

7.2. DECISION TREES IN R 91

science_perf= High if a student’s science score is equal or larger than 493;
otherwise science_perf= Low.

pisa <- pisa[, science_perf := as.factor(ifelse(science >= 493, "High", "Low"))]

In addition, we will subset the students from the United States and Canada
and choose some variables (rather than the entire set of variables) to make our
example relatively simple and manageable in terms of time. We will use the
following variables in our model:

Label Description
WEALTH Family wealth (WLE)
HEDRES Home educational resources (WLE)
ENVAWARE Environmental Awareness (WLE)
ICTRES ICT Resources (WLE)
EPIST Epistemological beliefs (WLE)
HOMEPOS Home possessions (WLE)
ESCS Index of economic, social and cultural status (WLE)
reading Students’ reading score in PISA 2015
math Students’ math score in PISA 2015

We call this new dataset pisa_small.

pisa_small <- subset(pisa, CNT %in% c("Canada", "United States"),
select = c(science_perf, WEALTH, HEDRES, ENVAWARE, ICTRES,

EPIST, HOMEPOS, ESCS, reading, math))

Before we begin the analysis, we need to install and load all the required pack-
ages.

decision_packages <- c("caret", "rpart", "rpart.plot", "randomForest", "modelr")
install.packages(decision_packages)

library("caret")
library("rpart")
library("rpart.plot")
library("randomForest")
library("modelr")

Already installed packages that we will use
library("data.table")
library("dplyr")
library("ggplot2")

92 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

Next, we will split our dataset into a training dataset and a test dataset. We
will train the decision tree on the training data and check its accuracy using
the test data. In order to replicate the results later on, we need to set the seed
– which will allow us to fix the randomization. Next, we remove the missing
cases, save it as a new dataset, and then use createDataPartition() from the
caret package to create an index to split the dataset as 70% to 30% using p =
0.7.

Set the seed before splitting the data
set.seed(442019)

We need to remove missing cases
pisa_nm <- na.omit(pisa_small)

Split the data into training and test
index <- createDataPartition(pisa_nm$science_perf, p = 0.7, list = FALSE)
train_dat <- pisa_nm[index,]
test_dat <- pisa_nm[-index,]

nrow(train_dat)

[1] 16561

nrow(test_dat)

[1] 7097

Alternatively, we could simply create the index using random number generation
with sample.int().

n <- nrow(pisa_nm)
index <- sample.int(n, size = round(0.7 * n))

To build a decision tree model, we will use the rpart function from the rpart
package. In the function, there are several elements:

• formula = science_perf ~ . defines the dependent variable (i.e., sci-
ence_perf) and the predictors (and ~ is the separator). Because we use
science_perf ~ ., we use all variables in the dataset (except for sci-
ence_perf) as our predictors. We could also write the same formula as
science_perf ~ math + reading + ESCS + ... + WEALTH by specify-
ing each variable individually.

• data = train_dat defines the dataset we are using for the analysis.

7.2. DECISION TREES IN R 93

• method = "class" defines what type of decision tree we are building.
method = "class" defines a classification tree and method = "anova"
defines a regression tree.

• control is a list of control (i.e., tuning) elements for the decision tree
algorithm. minsplit defines the minimum number of observations that
must exist in a node (default = 20); cp is the complexity parameter to
prune the subtrees that don’t improve the model fit (default = 0.01, if cp
= 0, then no pruning); xval is the number of cross-validations (default =
10, if xval = 0, then no cross validation).

• parms is a list of optional parameters for the splitting function.anova split-
ting (i.e., regression trees) has no parameters. For class splitting (i.e.,
classification tree), the most important option is the split index – which is
either "gini" for the Gini index or "information" for the Entropy index.
Splitting based on information can be slightly slower compared to the
Gini index (see the vignette for more information).

We will start building our decision tree model df_fit1 (standing for decision
tree fit for model 1) with no pruning (i.e., cp = 0) and no cross-validation as
we have a test dataset already (i.e., xval = 0). We will use the Gini index for
the splitting.

dt_fit1 <- rpart(formula = science_perf ~ .,
data = train_dat,
method = "class",
control = rpart.control(minsplit = 20,

cp = 0,
xval = 0),

parms = list(split = "gini"))

The estimated model is very likely to have too many nodes because we set cp
= 0. Due to having many nodes, first we will examine the results graphically,
before we attempt to print the output. Although the rpart package can draw
decision tree plots, they are very basic. Therefore, we will use the rpart.plot
function from the rpart.plot package to draw a nicer decision tree plot. Let’s
see the results graphically using the default settings of the rpart.plot function.

rpart.plot(dt_fit1)

https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf

94 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

math >= 481

reading >= 496

reading >= 518

math >= 510
reading >= 535

WEALTH < 1.1

EPIST >= 0.15

EPIST < 0.069

ENVAWARE >= −950e−6

HEDRES < −0.58

ICTRES >= −0.47

math >= 501

HOMEPOS < 0.59

ICTRES < 0.99

WEALTH >= 1.3

HOMEPOS < 1

reading >= 523

ENVAWARE >= 0.28

math >= 506

math >= 526

ENVAWARE >= −0.65

math < 524

math >= 525

ESCS < 0.65

ENVAWARE >= 0.14

WEALTH < 1.1

HOMEPOS >= 1.8

HOMEPOS < 1.4

ENVAWARE < 0.039

HEDRES < −0.74

ESCS >= 0.36

ENVAWARE < −0.29

math >= 497

math < 493

ESCS >= 1.3

ESCS < 1

EPIST >= −0.53

ESCS < 0.22

ENVAWARE >= −0.35

EPIST < 0.5

reading >= 463

math >= 522

math >= 495

ESCS < −0.52

WEALTH >= 1.6

reading >= 479

math >= 508

ESCS < 1.4

math < 521

math < 496

WEALTH >= 0.71

WEALTH < 0.91

ENVAWARE < −0.62

HEDRES < −0.022

math >= 497

math < 499
reading >= 491

ENVAWARE >= 0.43

reading >= 469

HOMEPOS < 0.69

ICTRES >= 1.3

HEDRES < −1.8

HOMEPOS >= 1.6

HOMEPOS < 0.55

ESCS < 0.91

HOMEPOS >= 0.4

math < 485

ENVAWARE >= −0.21

WEALTH < 0.068

WEALTH >= −0.18

math >= 522

reading >= 434

HEDRES >= −0.63

ENVAWARE >= 1.9

ICTRES < −0.014
reading >= 452

HEDRES < −0.039

reading >= 446

math >= 504

WEALTH >= 1.5

ESCS < 1.1

ESCS >= 0.35

HOMEPOS >= −0.034

ESCS < −0.31

ICTRES < −0.1

ENVAWARE >= −0.53

ENVAWARE < 0.66

math >= 492

math < 506

math >= 500

reading >= 506

reading >= 539

math >= 469

ICTRES < 0.33

EPIST >= 0.012

math >= 439

reading >= 543

math < 461

math >= 455

ENVAWARE >= 0.63

HOMEPOS < 0.98

math >= 471

EPIST >= 0.53

EPIST >= 0.88

ENVAWARE < 1.9

reading >= 525

WEALTH >= 0.97

ICTRES < −0.086

ESCS < 0.63

math >= 472

reading < 523

HOMEPOS >= 1.7

ENVAWARE >= −1.4

HEDRES < −0.6

math < 469

ESCS >= −0.44

math >= 458

WEALTH >= 0.88

WEALTH < −0.24

HOMEPOS >= 0.22

HOMEPOS < 0.6

math >= 439

ENVAWARE >= 0.1

HOMEPOS < 0.86

EPIST < −0.18

HEDRES < −0.83

ESCS >= 0.068

reading >= 515

HEDRES < −1.1

ENVAWARE < 0.45

WEALTH >= −0.11

HEDRES < −0.35
reading < 521

math >= 450

reading >= 477

ENVAWARE >= −0.32

math >= 475

WEALTH >= −0.42

WEALTH < −0.05

ICTRES >= 0.75

ESCS < 0.7

WEALTH < 2

ENVAWARE >= 0.56

ESCS < −0.9

math < 462

math >= 462

HEDRES < −1.2
reading >= 483

math < 474

math >= 473

math < 471

WEALTH < 1.3

ESCS >= 0.91

EPIST >= 0.81

math >= 469

ENVAWARE < −0.11

math < 450

math >= 453

math < 458

HEDRES < −0.63

ESCS < −1.1

math >= 461

ICTRES >= −0.55

EPIST < 0.83

ICTRES < −0.27

ICTRES >= 0.54

HOMEPOS >= 0.69

ESCS < −1

ENVAWARE >= −0.023

HOMEPOS < −0.98

reading >= 436

HEDRES < −1.5

math >= 459

ENVAWARE >= 0.2

ENVAWARE < 0.29

HOMEPOS >= −0.11

HOMEPOS < 0.058

ICTRES < −0.092

ENVAWARE >= 0.85

reading >= 481

HEDRES < −0.74

math >= 436

ENVAWARE >= −0.33

ESCS < −0.6

math < 440

High
0.39

100%

High
0.08
60%

High
0.03
54%

High
0.01
48%

High
0.00
41%

High
0.06
7%

High
0.03
4%

High
0.12
2%

High
0.09
2%

High
0.05
1%

High
0.13
1%

High
0.11
1%

High
0.06
0%

High
0.16
0%

High
0.05
0%

High
0.25
0%

High
0.13
0%

Low
0.67
0%

High
0.43
0%

High
0.23
1%

High
0.00
0%

High
0.29
0%

High
0.00
0%

High
0.34
0%

High
0.19
0%

High
0.00
0%

Low
0.57
0%

High
0.43
0%

High
0.11
0%

Low
0.54
0%

High
0.43
0%

High
0.18
0%

Low
0.70
0%

Low
0.86
0%

High
0.15
6%

High
0.08
4%

High
0.03
2%

High
0.14
2%

High
0.11
1%

High
0.08
1%

High
0.32
0%

High
0.13
0%

Low
0.71
0%

High
0.30
0%

High
0.20
0%

Low
0.58
0%

High
0.26
2%

High
0.18
1%

High
0.13
1%

High
0.33
0%

High
0.10
0%

High
0.50
0%

High
0.32
0%

Low
0.89
0%

High
0.32
1%

High
0.31
1%

High
0.17
0%

High
0.36
1%

High
0.27
0%

High
0.19
0%

High
0.00
0%

High
0.30
0%

High
0.14
0%

Low
0.67
0%

High
0.38
0%

High
0.00
0%

High
0.48
0%

High
0.37
0%

Low
0.75
0%

High
0.46
0%

High
0.39
0%

High
0.29
0%

High
0.10
0%

High
0.44
0%

High
0.32
0%

Low
0.75
0%

Low
0.69
0%

Low
0.90
0%

Low
0.86
0%

High
0.47
7%

High
0.35
4%

High
0.07
1%

High
0.44
3%

High
0.36
2%

High
0.13
0%

High
0.40
2%

High
0.25
0%

High
0.11
0%

Low
0.53
0%

High
0.44
1%

High
0.34
1%

High
0.30
1%

High
0.27
0%

Low
0.71
0%

Low
0.75
0%

Low
0.52
1%

High
0.09
0%

Low
0.56
1%

High
0.44
0%

High
0.20
0%

Low
0.59
0%

High
0.14
0%

Low
0.70
0%

High
0.46
0%

Low
0.93
0%

Low
0.68
0%

Low
0.60
0%

High
0.14
0%

Low
0.69
0%

High
0.46
0%

Low
0.83
0%

Low
1.00
0%

Low
0.54
1%

High
0.36
0%

High
0.30
0%

High
0.16
0%

High
0.45
0%

High
0.21
0%

Low
0.65
0%

Low
0.78
0%

Low
0.61
1%

High
0.14
0%

Low
0.63
1%

High
0.37
0%

Low
0.65
1%

Low
0.60
1%

Low
0.55
1%

High
0.12
0%

Low
0.59
0%

High
0.39
0%

High
0.00
0%

Low
0.58
0%

Low
0.71
0%

Low
0.58
0%

High
0.27
0%

Low
0.80
0%

Low
0.84
0%

Low
0.92
0%

Low
0.76
0%

Low
0.69
2%

High
0.40
0%

High
0.24
0%

High
0.09
0%

Low
0.80
0%

Low
0.82
0%

Low
0.75
2%

High
0.48
0%

High
0.25
0%

Low
0.59
0%

High
0.20
0%

Low
0.75
0%

High
0.44
0%

Low
0.93
0%

Low
0.80
2%

Low
0.72
1%

Low
0.56
0%

High
0.14
0%

Low
0.64
0%

Low
0.55
0%

High
0.37
0%

Low
0.77
0%

Low
1.00
0%

Low
0.78
1%

Low
0.69
0%

High
0.45
0%

Low
0.75
0%

High
0.43
0%

Low
0.80
0%

Low
0.92
0%

Low
0.89
1%

Low
0.82
0%

Low
0.78
0%

Low
0.68
0%

Low
0.55
0%

High
0.33
0%

Low
0.73
0%

Low
0.91
0%

Low
0.89
0%

Low
1.00
0%

Low
0.96
0%

Low
0.87
40%

High
0.43
6%

High
0.19
2%

High
0.08
1%

High
0.28
1%

High
0.17
1%

High
0.07
0%

High
0.26
0%

High
0.17
0%

Low
0.67
0%

High
0.49
0%

High
0.40
0%

High
0.24
0%

Low
0.61
0%

Low
0.90
0%

Low
0.52
4%

High
0.40
3%

High
0.24
1%

High
0.15
0%

High
0.03
0%

High
0.26
0%

High
0.04
0%

Low
0.53
0%

High
0.44
0%

High
0.15
0%

Low
0.61
0%

High
0.44
0%

Low
1.00
0%

High
0.46
2%

High
0.32
1%

High
0.16
0%

High
0.38
0%

High
0.26
0%

High
0.18
0%

Low
0.71
0%

Low
0.57
0%

High
0.20
0%

Low
0.75
0%

Low
0.53
1%

High
0.50
1%

High
0.00
0%

Low
0.52
1%

High
0.50
1%

High
0.39
0%

High
0.22
0%

Low
0.61
0%

High
0.39
0%

Low
0.87
0%

Low
0.58
1%

Low
0.52
1%

High
0.28
0%

Low
0.65
0%

High
0.20
0%

Low
0.75
0%

Low
0.61
0%

High
0.30
0%

Low
0.78
0%

Low
1.00
0%

Low
1.00
0%

Low
0.91
0%

Low
0.92
0%

Low
0.70
2%

Low
0.59
1%

High
0.38
0%

High
0.16
0%

Low
0.68
0%

High
0.33
0%

Low
0.92
0%

Low
0.73
1%

High
0.45
0%

High
0.25
0%

Low
0.58
0%

Low
0.82
0%

Low
0.82
1%

Low
0.74
0%

High
0.38
0%

Low
0.81
0%

Low
0.71
0%

Low
0.64
0%

High
0.29
0%

Low
0.76
0%

High
0.44
0%

Low
1.00
0%

Low
1.00
0%

Low
0.96
0%

Low
0.94
0%

Low
0.94
34%

Low
0.81
9%

Low
0.68
4%

Low
0.63
2%

High
0.47
1%

High
0.44
1%

High
0.10
0%

High
0.49
0%

High
0.33
0%

High
0.00
0%

High
0.50
0%

High
0.33
0%

Low
0.70
0%

Low
0.60
0%

High
0.39
0%

Low
0.74
0%

Low
0.86
0%

Low
0.67
2%

High
0.45
0%

High
0.19
0%

Low
0.77
0%

Low
0.70
2%

Low
0.63
1%

High
0.36
0%

Low
0.65
1%

Low
0.62
1%

Low
0.59
1%

High
0.27
0%

Low
0.63
1%

Low
0.57
0%

High
0.49
0%

High
0.29
0%

Low
0.57
0%

High
0.33
0%

Low
0.67
0%

High
0.33
0%

Low
0.81
0%

Low
0.83
0%

Low
0.88
0%

Low
0.91
0%

Low
0.85
0%

Low
0.78
1%

Low
0.53
0%

Low
0.82
1%

High
0.37
0%

Low
0.85
1%

Low
0.81
0%

Low
0.72
0%

High
0.37
0%

Low
0.80
0%

Low
0.93
0%

Low
0.97
0%

Low
0.79
1%

High
0.42
0%

Low
0.82
1%

Low
0.76
1%

Low
0.72
1%

Low
0.69
1%

High
0.40
0%

Low
0.72
0%

Low
0.56
0%

High
0.43
0%

Low
0.73
0%

Low
0.80
0%

Low
1.00
0%

Low
1.00
0%

Low
0.91
0%

Low
0.91
5%

Low
0.74
0%

High
0.50
0%

High
0.18
0%

Low
0.68
0%

Low
0.94
0%

Low
0.92
5%

Low
0.89
3%

Low
0.68
0%

High
0.47
0%

Low
1.00
0%

Low
0.90
3%

Low
0.84
1%

High
0.50
0%

Low
0.86
1%

Low
0.84
1%

Low
0.59
0%

Low
0.87
1%

Low
0.70
0%

High
0.40
0%

Low
1.00
0%

Low
0.90
1%

Low
1.00
0%

Low
0.94
2%

Low
0.97
2%

Low
0.99
25%

Low
0.92
2%

Low
0.86
1%

Low
0.73
0%

Low
0.62
0%

High
0.38
0%

Low
0.76
0%

High
0.43
0%

Low
0.93
0%

Low
0.94
0%

Low
0.95
0%

Low
0.95
2%

Low
0.99
23%

yes no

How does the model look like? It is NOT very interpretable, isn’t it? We
definitely need to prune the trees; otherwise the model yields a very complex
model with many nodes – which is very likely to overfit the data. In the following
model, we use cp = 0.005. Remember that as we increase cp, the pruning for
the model will also increase. The higher the cp value, the shorter the trees with
possibly fewer predictors.

dt_fit2 <- rpart(formula = science_perf ~ .,
data = train_dat,
method = "class",
control = rpart.control(minsplit = 20,

cp = 0.005,
xval = 0),

parms = list(split = "gini"))

rpart.plot(dt_fit2)

7.2. DECISION TREES IN R 95

math >= 481

reading >= 496

reading >= 463

reading >= 506

reading >= 539

math >= 455

High
0.39

100%

High
0.08
60%

High
0.03
54%

High
0.47
7%

High
0.35
4%

Low
0.69
2%

Low
0.87
40%

High
0.43
6%

High
0.19
2%

Low
0.52
4%

High
0.40
3%

Low
0.70
2%

Low
0.94
34%

yes no

We could also estimate the same model with the Entropy as the split criterion,
split = "information", and the results would be similar (not necessarily the
tree itself, but its classification performance).

dt_fit2 <- rpart(formula = science_perf ~ .,
data = train_dat,
method = "class",
control = rpart.control(minsplit = 20,

cp = 0.005,
xval = 0),

parms = list(split = "information"))

Now our model is less complex compared compared to the previous model. In
the above decision tree plot, each node shows:

• the predicted class (High or low)

96 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

• the predicted probability of the second class (i.e., “Low”)
• the percentage of observations in the node

Let’s play with the colors to make the trees even more distinct. Also, we will
adjust which values should be shown in the nodes, using extra = 8 (see other
possible options HERE). Each node in the new plot shows:

• the predicted class (High or low)
• the predicted probability of the fitted class

rpart.plot(dt_fit2, extra = 8, box.palette = "RdBu", shadow.col = "gray")

math >= 481

reading >= 496

reading >= 463

reading >= 506

reading >= 539

math >= 455

yes nomath >= 481

reading >= 496

reading >= 463

reading >= 506

reading >= 539

math >= 455

High
0.61

High
0.92

High
0.97

High
0.53

High
0.65

Low
0.69

Low
0.87

High
0.57

High
0.81

Low
0.52

High
0.60

Low
0.70

Low
0.94

yes no

An alternative way to prune the model is to use the prune() function from the
rpart package. In the following example, we will use our initial complex model
dt_fit1 and prune it.

dt_fit1_prune <- prune(dt_fit1, cp = 0.005)
rpart.plot(dt_fit1_prune, extra = 8, box.palette = "RdBu", shadow.col = "gray")

which would yield the same model that we estimated. Now let’s print the output
of our model using printcp():

http://www.milbo.org/doc/prp.pdf

7.2. DECISION TREES IN R 97

printcp(dt_fit2)

##
Classification tree:
rpart(formula = science_perf ~ ., data = train_dat, method = "class",
parms = list(split = "gini"), control = rpart.control(minsplit = 20,
cp = 0.005, xval = 0))
##
Variables actually used in tree construction:
[1] math reading
##
Root node error: 6461/16561 = 0.39
##
n= 16561
##
CP nsplit rel error
1 0.7456 0 1.00
2 0.0218 1 0.25
3 0.0115 2 0.23
4 0.0082 4 0.21
5 0.0050 6 0.19

In the output, CP refers to the complexity parameter, nsplit is the number of
splits in the decision tree based on the complexity parameter, and rel error is
the relative error (i.e., 1 − 𝑅2) of the solution. This is the error for predictions
of the data that were used to estimate the model. The section of Variables
actually used in tree construction shows which variables have been used
in the final model. In our example, only math and reading have been used.
What happened to the other variables?

In addition to printcp(), we can use summary() to print out more detailed
results with all splits.

summary(dt_fit2)

We don’t print the entire summary output here. Instead, we want to focus on
a specific section in the output:

Variable importance
math reading ENVAWARE ESCS EPIST HOMEPOS
46 37 5 4 4 4

Similarly, varImp() from the caret package also gives us a similar output:

98 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

varImp(dt_fit2)

Overall
ENVAWARE 559.740
EPIST 792.906
ESCS 387.685
HOMEPOS 22.061
math 5544.476
reading 5733.917
WEALTH 3.324
HEDRES 0.000
ICTRES 0.000

Both of these show the importance of the variables for our estimated decision
tree model. The larger the values are, the more crucial they are for the model.
In our example, math and reading seem to be highly important for the decision
tree model, whereas ICTRES is the least important variable. The variables that
were not very important for the model are those that were not included in the
final model. These variables are possibly have very low correlations with our
outcome variable, science_perf.

We can use rpart.rules to print out the decision rules from the trees. By
default, the output from this function shows the probability of the second class
for each decision/split being made (i.e., the category “low” in our example) and
what percent of the observations fall into this category.

rpart.rules(dt_fit2, cover = TRUE)

science_perf cover
0.03 when math >= 481 & reading >= 496 54%
0.19 when math < 481 & reading >= 539 2%
0.35 when math >= 481 & reading is 463 to 496 4%
0.40 when math is 455 to 481 & reading is 506 to 539 3%
0.69 when math >= 481 & reading < 463 2%
0.70 when math < 455 & reading is 506 to 539 2%
0.94 when math < 481 & reading < 506 34%

Furthermore, we need to check the classification accuracy of the estimated de-
cision tree with the test data. Otherwise, it is hard to justify whether or not
the estimated decision tree would work accurately for prediction. Below we es-
timate the predicted classes (either high or low) from the test data by applying
the estimated model.First we obtain model predictions using predict() and
then turn the results into a data frame called dt_pred.

7.2. DECISION TREES IN R 99

dt_pred <- predict(dt_fit2, test_dat) %>%
as.data.frame()

head(dt_pred)

High Low
1 0.97271 0.02729
2 0.05905 0.94095
3 0.05905 0.94095
4 0.05905 0.94095
5 0.97271 0.02729
6 0.05905 0.94095

This dataset shows each observation’s (i.e., students from the test data) prob-
ability of falling into either high or low categories based on the decision rules
that we estimated. We will turn these probabilities into binary classifications,
depending on whether or not they are >= 50%. Then, we will compare these es-
timates with the actual classes in the test data (i.e., test_dat$science_perf)
in order to create a confusion matrix.

dt_pred <- mutate(dt_pred,
science_perf = as.factor(ifelse(High >= 0.5, "High", "Low"))
) %>%
select(science_perf)

confusionMatrix(dt_pred$science_perf, test_dat$science_perf)

Confusion Matrix and Statistics
##
Reference
Prediction High Low
High 4090 323
Low 238 2446
##
Accuracy : 0.921
95% CI : (0.914, 0.927)
No Information Rate : 0.61
P-Value [Acc > NIR] : < 2e-16
##
Kappa : 0.833
##
Mcnemar's Test P-Value : 0.00039
##
Sensitivity : 0.945

100 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

Specificity : 0.883
Pos Pred Value : 0.927
Neg Pred Value : 0.911
Prevalence : 0.610
Detection Rate : 0.576
Detection Prevalence : 0.622
Balanced Accuracy : 0.914
##
'Positive' Class : High
##

The output shows that the overall accuracy is around 92%, sensitivit is 94%, and
specificity is 89%. For only two variables, this is very good. However, sometimes
we do not have predictors that are highly correlated with the outcome variables.
In such cases, the model tuning might take much longer.

Let’s assume that we did NOT have reading and math in our dataset. We still
want to predict science_perf using the remaining variables.

dt_fit3a <- rpart(formula = science_perf ~ WEALTH + HEDRES + ENVAWARE + ICTRES + EPIST +
HOMEPOS +ESCS,

data = train_dat,
method = "class",
control = rpart.control(minsplit = 20,

cp = 0.001,
xval = 0),

parms = list(split = "gini"))

rpart.plot(dt_fit3a, extra = 8, box.palette = "RdBu", shadow.col = "gray")

7.2. DECISION TREES IN R 101

EPIST >= 0.22

ESCS >= 0.21

ENVAWARE >= −1.1

ESCS >= −1.3

ENVAWARE >= −0.44

HOMEPOS >= −0.54

WEALTH >= −1.7

HEDRES < 0.83

ENVAWARE >= −0.71

ESCS >= 0.56

EPIST >= −0.61

ENVAWARE >= 0.14

WEALTH < 2.6

ICTRES >= −0.52

HOMEPOS >= −0.01

WEALTH < 0.73

EPIST >= −0.54

ENVAWARE >= 0.39

HOMEPOS >= 0.79

HEDRES < 0.2

WEALTH < −0.31

ICTRES >= −0.53

WEALTH < 0.36

ICTRES < 2.4

EPIST >= −0.082

WEALTH < 1.5 ENVAWARE >= −0.46

ESCS >= −0.52

ENVAWARE < −0.076

HOMEPOS >= 0.16

ESCS < 0.26

ENVAWARE >= 0.055

ICTRES < 1.3

WEALTH < 1.8

EPIST >= −0.58

ESCS >= −0.25

EPIST >= −0.12

HOMEPOS >= −1.2

ICTRES >= −1.7

WEALTH < −0.32

HEDRES < −0.2

HOMEPOS >= −0.25

ENVAWARE >= −1.2

ESCS >= −0.057

EPIST >= −0.55

HOMEPOS >= 0.42

WEALTH < 0.9

ENVAWARE >= −1.1

ENVAWARE < −0.97

yes noEPIST >= 0.22

ESCS >= 0.21

ENVAWARE >= −1.1

ESCS >= −1.3

ENVAWARE >= −0.44

HOMEPOS >= −0.54

WEALTH >= −1.7

HEDRES < 0.83

ENVAWARE >= −0.71

ESCS >= 0.56

EPIST >= −0.61

ENVAWARE >= 0.14

WEALTH < 2.6

ICTRES >= −0.52

HOMEPOS >= −0.01

WEALTH < 0.73

EPIST >= −0.54

ENVAWARE >= 0.39

HOMEPOS >= 0.79

HEDRES < 0.2

WEALTH < −0.31

ICTRES >= −0.53

WEALTH < 0.36

ICTRES < 2.4

EPIST >= −0.082

WEALTH < 1.5 ENVAWARE >= −0.46

ESCS >= −0.52

ENVAWARE < −0.076

HOMEPOS >= 0.16

ESCS < 0.26

ENVAWARE >= 0.055

ICTRES < 1.3

WEALTH < 1.8

EPIST >= −0.58

ESCS >= −0.25

EPIST >= −0.12

HOMEPOS >= −1.2

ICTRES >= −1.7

WEALTH < −0.32

HEDRES < −0.2

HOMEPOS >= −0.25

ENVAWARE >= −1.2

ESCS >= −0.057

EPIST >= −0.55

HOMEPOS >= 0.42

WEALTH < 0.9

ENVAWARE >= −1.1

ENVAWARE < −0.97

High
0.61

High
0.77

High
0.83

High
0.64

High
0.67

High
0.68

High
0.71

High
0.55

High
0.61

Low
0.60

Low
0.51

High
0.53

High
0.58

Low
0.74

Low
0.78

Low
0.71

Low
0.53

High
0.54

High
0.63

High
0.66

High
0.51

High
0.63

High
0.65

High
0.68

Low
0.67

Low
0.70

Low
0.59

Low
0.54

High
0.52

High
0.57

High
0.60

High
0.66

High
0.56

High
0.76

High
0.53

High
0.60

Low
0.57

High
0.68

Low
0.63

Low
0.54

Low
0.51

High
0.59

Low
0.62

Low
0.89

Low
0.54

Low
0.53

High
0.61

High
0.75

Low
0.67

Low
0.54

Low
0.52

Low
0.51

High
0.57

High
0.61

High
0.71

Low
0.57

Low
0.92

Low
0.54

High
0.52

High
0.57

High
0.60

Low
0.72

Low
0.61

Low
0.66

Low
0.66

Low
0.65

Low
0.77

Low
0.59

Low
0.56

High
0.50

High
0.69

Low
0.53

Low
0.51

Low
0.50

High
0.59

High
0.69

Low
0.56

High
0.70

Low
0.65

Low
0.56

Low
1.00

Low
0.73

Low
0.60

Low
0.69

Low
0.74

Low
0.63

Low
0.55

High
0.51

High
0.58

High
0.78

Low
0.51

High
0.55

High
0.82

Low
0.55

Low
0.66

Low
0.56

Low
0.69

Low
0.76

Low
0.83

yes no

Now, let’s change cp to 0.005.

dt_fit3b <- rpart(formula = science_perf ~ WEALTH + HEDRES + ENVAWARE + ICTRES + EPIST +
HOMEPOS + ESCS,

data = train_dat,
method = "class",
control = rpart.control(minsplit = 20,

cp = 0.005,
xval = 0),

parms = list(split = "gini"))

rpart.plot(dt_fit3b, extra = 8, box.palette = "RdBu", shadow.col = "gray")

102 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

EPIST >= 0.22

ENVAWARE >= −0.71

ESCS >= 0.56

HOMEPOS >= −0.01

WEALTH < 0.73

yes noEPIST >= 0.22

ENVAWARE >= −0.71

ESCS >= 0.56

HOMEPOS >= −0.01

WEALTH < 0.73

High
0.61

High
0.77

Low
0.53

High
0.54

High
0.63

Low
0.54

High
0.52

High
0.57

Low
0.54

Low
0.59

Low
0.74

yes no

Since we also care about the accuracy, sensitivity, and specificity of these models,
we can turn this experiment into a small function.

decision_check <- function(cp) {
require("rpart")
require("dplyr")

dt <- rpart(formula = science_perf ~ WEALTH + HEDRES + ENVAWARE + ICTRES + EPIST +
HOMEPOS + ESCS,

data = train_dat,
method = "class",
control = rpart.control(minsplit = 20,

cp = cp,
xval = 0),

parms = list(split = "gini"))

dt_pred <- predict(dt, test_dat) %>%
as.data.frame() %>%
mutate(science_perf = as.factor(ifelse(High >= 0.5, "High", "Low"))) %>%
select(science_perf)

cm <- confusionMatrix(dt_pred$science_perf, test_dat$science_perf)

7.2. DECISION TREES IN R 103

results <- data.frame(cp = cp,
Accuracy = round(cm$overall[1], 3),
Sensitivity = round(cm$byClass[1], 3),
Specificity = round(cm$byClass[2], 3))

return(results)
}

result <- NULL
for(i in seq(from=0.001, to=0.08, by = 0.005)) {

result <- rbind(result, decision_check(cp = i))
}

result <- result[order(result$Accuracy, result$Sensitivity, result$Specificity),]
result

cp Accuracy Sensitivity Specificity
Accuracy9 0.046 0.676 0.942 0.259
Accuracy10 0.051 0.676 0.942 0.259
Accuracy11 0.056 0.676 0.942 0.259
Accuracy12 0.061 0.676 0.942 0.259
Accuracy13 0.066 0.676 0.942 0.259
Accuracy14 0.071 0.676 0.942 0.259
Accuracy15 0.076 0.676 0.942 0.259
Accuracy2 0.011 0.692 0.776 0.560
Accuracy3 0.016 0.692 0.776 0.560
Accuracy4 0.021 0.692 0.776 0.560
Accuracy5 0.026 0.692 0.776 0.560
Accuracy6 0.031 0.692 0.776 0.560
Accuracy7 0.036 0.692 0.776 0.560
Accuracy8 0.041 0.692 0.776 0.560
Accuracy1 0.006 0.697 0.826 0.494
Accuracy 0.001 0.701 0.821 0.512

We can also visulize the results using ggplot2. First, we wil transform the
result dataset into a long format and then use this new dataset (called
result_long) in ggplot().

result_long <- melt(as.data.table(result),
id.vars = c("cp"),
measure = c("Accuracy", "Sensitivity", "Specificity"),
variable.name = "Index",
value.name = "Value")

ggplot(data = result_long,

104 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

mapping = aes(x = cp, y = Value)) +
geom_point(aes(color = Index), size = 3) +
labs(x = "Complexity Parameter", y = "Value") +
theme_bw()

0.4

0.6

0.8

0.00 0.02 0.04 0.06
Complexity Parameter

V
al

ue

Index

Accuracy

Sensitivity

Specificity

In the plot, we see that there is a trade-off between sensitivity and specificity.
Depending on the situation, we may prefer higher sensitivity (e.g., correctly
identifying those who have “high” science scores) or higher specificity (e.g.,
correctly identifying those who have “low” science scores). For example, if
we want to know who is performing poorly in science (so that we can design
additional instructional materials), we may want the model to identify “low”
performers more accurately.

7.2.1 Cross-validation

As you may remember, we set xval = 0 in our decision tree models because we
did not want to run any cross-validation samples. However, cross-validations
(e.g., K-fold approach) are highly useful when we do not have a test or validation
dataset, or our dataset is to small to split into training and test data. A typical
way to use cross-validation in decision trees is to not specify a cp (i.e., complexity
parameter) and perform cross validation. In the following example, we will

7.2. DECISION TREES IN R 105

assume that our dataset is not too big and thus we want to run 10 cross-
validation samples (i.e., splits) as we build our decision tree model. Note that
we use cp = 0 this time.

dt_fit4 <- rpart(formula = science_perf ~ WEALTH + HEDRES + ENVAWARE + ICTRES +
EPIST + HOMEPOS + ESCS,

data = train_dat,
method = "class",
control = rpart.control(minsplit = 20,

cp = 0,
xval = 10),

parms = list(split = "gini"))

In the results, we can evaluate the cross-validated error (i.e., X-val Relative
Error) and choose the complexity parameter that would give us an acceptable
value. Then, we can use this cp value and prune the trees. We use plotcp()
function to visualize the cross-validation results.

printcp(dt_fit4)

##
Classification tree:
rpart(formula = science_perf ~ WEALTH + HEDRES + ENVAWARE + ICTRES +
EPIST + HOMEPOS + ESCS, data = train_dat, method = "class",
parms = list(split = "gini"), control = rpart.control(minsplit = 20,
cp = 0, xval = 10))
##
Variables actually used in tree construction:
[1] ENVAWARE EPIST ESCS HEDRES HOMEPOS ICTRES WEALTH
##
Root node error: 6461/16561 = 0.39
##
n= 16561
##
CP nsplit rel error xerror xstd
1 7.7e-02 0 1.00 1.00 0.0097
2 4.6e-02 2 0.85 0.84 0.0093
3 9.8e-03 3 0.80 0.81 0.0093
4 4.8e-03 5 0.78 0.80 0.0092
5 4.2e-03 7 0.77 0.79 0.0092
6 2.8e-03 9 0.76 0.79 0.0092
7 1.5e-03 10 0.76 0.78 0.0092
8 1.4e-03 16 0.75 0.78 0.0092
9 1.4e-03 21 0.74 0.78 0.0092
10 1.3e-03 25 0.74 0.78 0.0092

106 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

11 1.2e-03 27 0.74 0.78 0.0092
12 1.1e-03 30 0.73 0.78 0.0092
13 1.1e-03 34 0.73 0.78 0.0092
14 1.0e-03 35 0.73 0.78 0.0092
15 9.3e-04 49 0.71 0.78 0.0092
16 8.5e-04 62 0.70 0.78 0.0092
17 7.7e-04 65 0.69 0.78 0.0092
18 7.2e-04 73 0.69 0.79 0.0092
19 7.0e-04 81 0.68 0.79 0.0092
20 6.7e-04 89 0.68 0.79 0.0092
21 6.5e-04 92 0.67 0.79 0.0092
22 6.2e-04 99 0.67 0.79 0.0092
23 5.6e-04 120 0.66 0.79 0.0092
24 5.4e-04 127 0.65 0.80 0.0092
25 4.6e-04 144 0.64 0.80 0.0092
26 4.3e-04 191 0.62 0.81 0.0093
27 4.1e-04 228 0.60 0.81 0.0093
28 3.9e-04 244 0.59 0.82 0.0093
29 3.7e-04 263 0.58 0.82 0.0093
30 3.6e-04 268 0.58 0.82 0.0093
31 3.5e-04 274 0.58 0.82 0.0093
32 3.4e-04 300 0.57 0.84 0.0094
33 3.1e-04 308 0.56 0.84 0.0094
34 2.8e-04 379 0.54 0.84 0.0094
35 2.6e-04 388 0.53 0.85 0.0094
36 2.3e-04 420 0.52 0.85 0.0094
37 2.1e-04 447 0.52 0.86 0.0094
38 1.9e-04 487 0.51 0.86 0.0094
39 1.9e-04 504 0.50 0.87 0.0094
40 1.8e-04 509 0.50 0.87 0.0094
41 1.5e-04 515 0.50 0.88 0.0095
42 1.3e-04 612 0.48 0.88 0.0095
43 1.2e-04 618 0.48 0.89 0.0095
44 1.1e-04 640 0.48 0.89 0.0095
45 1.0e-04 647 0.48 0.89 0.0095
46 9.7e-05 659 0.48 0.89 0.0095
47 7.7e-05 676 0.48 0.89 0.0095
48 6.2e-05 720 0.47 0.91 0.0095
49 5.2e-05 726 0.47 0.91 0.0095
50 3.9e-05 753 0.47 0.91 0.0095
51 1.7e-05 780 0.47 0.92 0.0096
52 0.0e+00 789 0.47 0.92 0.0096

7.2. DECISION TREES IN R 107

plotcp(dt_fit4)

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
7

0.
8

0.
9

1.
0

1.
1

Inf 0.0045 0.0013 0.00081 0.00055 0.00035 2e−04 0.00011 2.6e−05

1 4 8 17 28 36 66 90 128 245 301 421 510 641 721 790

size of tree

Next, we can modify our model as follows:

dt_fit5 <- rpart(formula = science_perf ~ WEALTH + HEDRES + ENVAWARE + ICTRES +
EPIST + HOMEPOS + ESCS,

data = train_dat,
method = "class",
control = rpart.control(minsplit = 20,

cp = 0.0039,
xval = 0),

parms = list(split = "gini"))

printcp(dt_fit5)

##
Classification tree:
rpart(formula = science_perf ~ WEALTH + HEDRES + ENVAWARE + ICTRES +
EPIST + HOMEPOS + ESCS, data = train_dat, method = "class",
parms = list(split = "gini"), control = rpart.control(minsplit = 20,
cp = 0.0039, xval = 0))
##

108 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

Variables actually used in tree construction:
[1] ENVAWARE EPIST ESCS HOMEPOS WEALTH
##
Root node error: 6461/16561 = 0.39
##
n= 16561
##
CP nsplit rel error
1 0.0768 0 1.00
2 0.0460 2 0.85
3 0.0098 3 0.80
4 0.0048 5 0.78
5 0.0042 7 0.77
6 0.0039 9 0.76

rpart.plot(dt_fit5, extra = 8, box.palette = "RdBu", shadow.col = "gray")

EPIST >= 0.22

ESCS >= 0.21

ENVAWARE >= −1.1

ENVAWARE >= −0.71

ESCS >= 0.56

EPIST >= −0.61

ENVAWARE >= 0.14

HOMEPOS >= −0.01

WEALTH < 0.73

yes noEPIST >= 0.22

ESCS >= 0.21

ENVAWARE >= −1.1

ENVAWARE >= −0.71

ESCS >= 0.56

EPIST >= −0.61

ENVAWARE >= 0.14

HOMEPOS >= −0.01

WEALTH < 0.73

High
0.61

High
0.77

High
0.83

High
0.64

High
0.67

Low
0.71

Low
0.53

High
0.54

High
0.63

High
0.66

High
0.51

High
0.63

Low
0.59

Low
0.54

High
0.52

High
0.57

Low
0.54

Low
0.59

Low
0.74

yes no

Lastly, for the sake of brevity, we demonstrate a short regression tree example
below where we predict math scores (a continuous variable) using the same set
of variables. This time we use method = "anova" in the rpart() function to
estimate a regression tree.
Let’s begin with cross-validation and check how 𝑅2 changes depending on the
number of splits.

7.2. DECISION TREES IN R 109

rt_fit1 <- rpart(formula = math ~ WEALTH + HEDRES + ENVAWARE +
ICTRES + EPIST + HOMEPOS + ESCS,
data = train_dat,
method = "anova",
control = rpart.control(minsplit = 20,

cp = 0.001,
xval = 10),

parms = list(split = "gini"))

printcp(rt_fit1)

##
Regression tree:
rpart(formula = math ~ WEALTH + HEDRES + ENVAWARE + ICTRES +
EPIST + HOMEPOS + ESCS, data = train_dat, method = "anova",
parms = list(split = "gini"), control = rpart.control(minsplit = 20,
cp = 0.001, xval = 10))
##
Variables actually used in tree construction:
[1] ENVAWARE EPIST ESCS HEDRES WEALTH
##
Root node error: 1e+08/16561 = 6308
##
n= 16561
##
CP nsplit rel error xerror xstd
1 0.1117 0 1.00 1.00 0.0101
2 0.0370 1 0.89 0.89 0.0092
3 0.0349 2 0.85 0.86 0.0090
4 0.0177 3 0.82 0.82 0.0086
5 0.0081 4 0.80 0.81 0.0085
6 0.0071 5 0.79 0.80 0.0084
7 0.0061 6 0.78 0.79 0.0083
8 0.0049 7 0.78 0.79 0.0083
9 0.0034 8 0.77 0.78 0.0082
10 0.0031 9 0.77 0.78 0.0082
11 0.0023 10 0.77 0.78 0.0082
12 0.0022 11 0.76 0.78 0.0082
13 0.0022 12 0.76 0.78 0.0082
14 0.0021 13 0.76 0.78 0.0082
15 0.0019 14 0.76 0.77 0.0082
16 0.0017 16 0.75 0.77 0.0082
17 0.0017 17 0.75 0.77 0.0082
18 0.0016 18 0.75 0.77 0.0082
19 0.0016 19 0.75 0.77 0.0082

110 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

20 0.0016 20 0.75 0.77 0.0082
21 0.0016 21 0.75 0.77 0.0082
22 0.0014 22 0.74 0.77 0.0081
23 0.0014 23 0.74 0.77 0.0081
24 0.0013 25 0.74 0.77 0.0081
25 0.0013 26 0.74 0.77 0.0081
26 0.0010 27 0.74 0.76 0.0081
27 0.0010 28 0.74 0.76 0.0081
28 0.0010 29 0.73 0.76 0.0081

Then, we can adjust our model based on the suggestions from the previous plot.
Note that we use extra = 100 in the rpart.plot() function to show percent-
ages (Note: rpart.plot has different extra options depending on whether it is
a classification or regression tree).

rt_fit2 <- rpart(formula = math ~ WEALTH + HEDRES + ENVAWARE +
ICTRES + EPIST + HOMEPOS + ESCS,
data = train_dat,
method = "anova",
control = rpart.control(minsplit = 20,

cp = 0.007,
xval = 0),

parms = list(split = "gini"))

printcp(rt_fit2)

##
Regression tree:
rpart(formula = math ~ WEALTH + HEDRES + ENVAWARE + ICTRES +
EPIST + HOMEPOS + ESCS, data = train_dat, method = "anova",
parms = list(split = "gini"), control = rpart.control(minsplit = 20,
cp = 0.007, xval = 0))
##
Variables actually used in tree construction:
[1] ENVAWARE EPIST ESCS
##
Root node error: 1e+08/16561 = 6308
##
n= 16561
##
CP nsplit rel error
1 0.1117 0 1.00
2 0.0370 1 0.89
3 0.0349 2 0.85
4 0.0177 3 0.82

7.2. DECISION TREES IN R 111

5 0.0081 4 0.80
6 0.0071 5 0.79
7 0.0070 6 0.78

rpart.plot(rt_fit2, extra = 100, box.palette = "RdBu", shadow.col = "gray")

EPIST < 0.2

ESCS < 0.69

ENVAWARE < −1.1

ESCS < −0.61

ENVAWARE < −1.1

ESCS < 0.47

yes noEPIST < 0.2

ESCS < 0.69

ENVAWARE < −1.1

ESCS < −0.61

ENVAWARE < −1.1

ESCS < 0.47

502
100%

477
54%

461
34%

422
6%

470
28%

447
7%

477
21%

504
20%

456
2%

509
18%

530
46%

504
19%

549
27%

yes no

To evaluate the model accuracy, we cannot use the classification-based indices
anymore because we built a regression tree, not a classification tree. Two useful
measures that we can for evaluating regression trees are the mean absolute
error (mae) and the root mean square error (rmse). The modelr package has
several functions – such as mae() and rmse() – to evaluate regression-based
models. Using the training and (more importantly) test data, we can evaluate
the accuracy of the decision tree model that we estimated above.

Training data
mae(model = rt_fit2, data = train_dat)

[1] 56.66

rmse(model = rt_fit2, data = train_dat)

[1] 70.31

112 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

Test data
mae(model = rt_fit2, data = test_dat)

[1] 56.31

rmse(model = rt_fit2, data = test_dat)

[1] 70.34

We seem to have slightly less error with the training data than the test data. Is
this finding suprising to you?

7.3 Random Forests

Decision trees can sometimes be non-robust because a small change in the data
may cause a significant change in the final estimated tree. Therefore, whenever
a decision tree approach is not completely stable, an alternative method – such
as random forests – can be more suitable for supervised ML applications.
Unlike the decision tree approach where there is a single solution from the same
sample, random forest builds multiple decision trees by splitting the data into
multiple sub-samples and merges them together to get a more accurate and
stable prediction.
The underlying mechanism of random forests is very similar to that of decision
trees. However, random forests first build lots of bushy trees and then average
them to reduce the overall variance. Figure 7.2 shows how a random forest
would look like with three trees.
Random forest adds additional randomness to the model, while growing the
trees. Instead of searching for the most important feature (i.e., predictor) while
splitting a node, it searches for the best feature among a random subset of fea-
tures. That is, only a random subset of the features is taken into consideration
by the algorithm for splitting a node. This results in a wide diversity that
generally results in a better model. For example, if there is a strong predictor
among a set of predictors, a decision tree would typically rely on this partic-
ular predictor to make predictions and build trees. However, random forests
force each split to consider only a set of the predictors – which would result in
trees that utilize not only the strong predictor but also other predictors that
are moderately correlated with the outcome variable.
Random forest has nearly the same tuning parameters as a decision tree. Also,
like decision trees, random forests can be used for both classification and regres-
sion problems. However, there are some differences between the two approaches.

7.4. RANDOM FORESTS IN R 113

Figure 7.2: An example of random forests approach

Unlike in decision trees, it is easier to control and prevent overfitting in random
forests. This is because random forests create random subsets of the features
and build much smaller trees using these subsets. Afterwards, it combines the
subtrees. It should be noted that this procedure makes random forests computa-
tionally slower, depending on how many trees random forest builds. Therefore,
it may not be effective for real-time predictions.

The random forest algorithm is used in a lot of different fields, like banking,
stock market, medicine, and e-commerce. For example, random forests can be
used to detect customers who will use the bank’s services more frequently than
others and repay their debt in time. It can also used to detect fraud customers
who want to scam the bank. In educational testing, we can use random forests
to analyze a student’s assessment history (e.g., test scores, response times, de-
mographic variables, grade level, and so on) to identify whether the student has
any learning difficulties. Similarly, we can use examinee-related variables, test
scores, and test administration date to identify whether an examinee is likely
to re-take the test (e.g., TOEFL or GRE) in the future.

7.4 Random forests in R

In R, randomForest and caret packages can be used to apply the random
forest algorithm to classification and regression problems. The use of the
randomForest() function is similar to that of rpart(). The main elements
that we need to define are:

• formula: A regression-like formula defining the dependent variable and
the predictors – it is the same as the one for rpart().

• data: The dataset that we use to train the model.

114 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

• importance: If TRUE, then importance of the predictors is assessed in
the model.

• ntree: Number of trees to grow in the model; we often start with a large
number and then reduce it as we adjust the model based on the results.
A large number for ntree can significantly increase the estimation time
for the model.

There are also other elements that we can change depending on whether it is
a classification or regression model (see ?randomForest for more details). In
the following example, we will focus on the same classification problem that
we used before for decision trees. We initially set ntree = 1000 to get 1000
trees in total but we will evaluate whether we need all of these trees to have an
accurate model.

library("randomForest")
library("caret")

rf_fit1 <- randomForest(formula = science_perf ~ .,
data = train_dat,
importance = TRUE, ntree = 1000)

print(rf_fit1)

##
Call:
randomForest(formula = science_perf ~ ., data = train_dat, importance = TRUE, ntree = 1000)
Type of random forest: classification
Number of trees: 1000
No. of variables tried at each split: 3
##
OOB estimate of error rate: 7.35%
Confusion matrix:
High Low class.error
High 9506 594 0.05881
Low 623 5838 0.09642

In the output, we see the confusion matrix along with classification error and
out-of-bag (OOB) error. OBB is a method of measuring the prediction error
of random forests, finding the mean prediction error on each training sample,
using only the trees that did not have in their bootstrap sample. The results
show that the overall OBB error is around 7.6%, while the classification error
is 6% for the high category and around 10% for the low category.

Next, by checking the level error across the number of trees, we can determine
the ideal number of trees for our model.

7.4. RANDOM FORESTS IN R 115

plot(rf_fit1)

0 200 400 600 800 1000

0.
06

0.
08

0.
10

0.
12

0.
14

rf_fit1

trees

E
rr

or

The plot shows that the error level does not go down any further after roughly
50 trees. So, we can run our model again by using ntree = 50 this time.

rf_fit2 <- randomForest(formula = science_perf ~ .,
data = train_dat,
importance = TRUE, ntree = 50)

print(rf_fit2)

##
Call:
randomForest(formula = science_perf ~ ., data = train_dat, importance = TRUE, ntree = 50)
Type of random forest: classification
Number of trees: 50
No. of variables tried at each split: 3
##
OOB estimate of error rate: 7.72%
Confusion matrix:
High Low class.error
High 9473 627 0.06208
Low 652 5809 0.10091

116 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

We can see the overall accuracy of model (92.12%) as follows:

sum(diag(rf_fit2$confusion)) / nrow(train_dat)

[1] 0.9228

As we did for the decision trees, we can check the importance of the predictors
in the model, using importance() and varImpPlot(). With importance(), we
will first import the importance measures, turn it into a data.frame, save the
row names as predictor names, and finally sort the data by MeanDecreaseGini
(or, you can also see the basic output using only importance(rf_fit2))

importance(rf_fit2) %>%
as.data.frame() %>%
mutate(Predictors = row.names(.)) %>%
arrange(desc(MeanDecreaseGini))

High Low MeanDecreaseAccuracy MeanDecreaseGini Predictors
math 29.4738 32.7964 42.781 3373.4 math
reading 29.3706 35.6305 45.556 2813.0 reading
EPIST 0.1433 0.9791 0.894 348.4 EPIST
ENVAWARE 4.9280 3.5227 6.098 330.7 ENVAWARE
ESCS 8.6098 3.8121 8.277 289.3 ESCS
HOMEPOS 4.4148 8.5031 8.337 215.5 HOMEPOS
WEALTH 5.9682 5.6186 8.927 205.9 WEALTH
ICTRES 7.9215 5.4540 9.824 167.6 ICTRES
HEDRES 8.1792 3.9177 8.264 136.8 HEDRES

varImpPlot(rf_fit2,
main = "Importance of Variables for Science Performance")

7.4. RANDOM FORESTS IN R 117

EPIST

ENVAWARE

HEDRES

ESCS

HOMEPOS

WEALTH

ICTRES

math

reading

0 10 20 30 40
MeanDecreaseAccuracy

HEDRES

ICTRES

WEALTH

HOMEPOS

ESCS

ENVAWARE

EPIST

reading

math

0 500 1500 2500 3500
MeanDecreaseGini

Importance of Variables for Science Performance

The output shows different importance measures for the predictors that we
used in the model. MeanDecreaseAccuracy and MeanDecreaseGini represent
the overall classification error rate (or, mean squared error for regression) and
the total decrease in node impurities from splitting on the variable, averaged
over all trees. In the output, math and reading are the two predictors that seem
to influence the model performance substantially, whereas EPIST and HEDRES
are the least important variables. varImpPlot() presents the same information
visually.
Next, we check the confusion matrix to see the accuracy, sensitivity, and speci-
ficity of our model.

rf_pred <- predict(rf_fit2, test_dat) %>%
as.data.frame() %>%
mutate(science_perf = as.factor(`.`)) %>%
select(science_perf)

confusionMatrix(rf_pred$science_perf, test_dat$science_perf)

Confusion Matrix and Statistics
##
Reference
Prediction High Low
High 4047 261

118 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

Low 281 2508
##
Accuracy : 0.924
95% CI : (0.917, 0.93)
No Information Rate : 0.61
P-Value [Acc > NIR] : <2e-16
##
Kappa : 0.84
##
Mcnemar's Test P-Value : 0.414
##
Sensitivity : 0.935
Specificity : 0.906
Pos Pred Value : 0.939
Neg Pred Value : 0.899
Prevalence : 0.610
Detection Rate : 0.570
Detection Prevalence : 0.607
Balanced Accuracy : 0.920
##
'Positive' Class : High
##

The results show that the accuracy is quite high (92%). Similarly, sensitivity
and specificity are also very high. This is not necessarily surprising because we
already knew that the math and reading scores are highly correlated with the
science performance. Also, our decision tree model yielded very similar results.

Finally, let’s visualize the classification results using ggplot2. First, we will cre-
ate a new dataset called rf_class with the predicted and actual classifications
(from the test data) based on the random forest model. Then, we will visualize
the correct and incorrect classifications using a bar chart and a point plot with
jittering.

rf_class <- data.frame(actual = test_dat$science_perf,
predicted = rf_pred$science_perf) %>%

mutate(Status = ifelse(actual == predicted, TRUE, FALSE))

ggplot(data = rf_class,
mapping = aes(x = predicted, fill = Status)) +

geom_bar(position = "dodge") +
labs(x = "Predicted Science Performance",

y = "Actual Science Performance") +
theme_bw()

7.4. RANDOM FORESTS IN R 119

0

1000

2000

3000

4000

High Low
Predicted Science Performance

A
ct

ua
l S

ci
en

ce
 P

er
fo

rm
an

ce

Status

FALSE

TRUE

ggplot(data = rf_class,
mapping = aes(x = predicted, y = actual,

color = Status, shape = Status)) +
geom_jitter(size = 2, alpha = 0.6) +
labs(x = "Predicted Science Performance",

y = "Actual Science Performance") +
theme_bw()

120 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

High

Low

High Low
Predicted Science Performance

A
ct

ua
l S

ci
en

ce
 P

er
fo

rm
an

ce

Status

FALSE

TRUE

Like decision trees, random forests can also be used for cross-validation,
using the package rfUtilities that utilizes the objects returned from the
randomForest() function. Below we show how cross-validation would work for
random forests (output is not shown). Using the randomForest object that we
estimated earlier (i.e.„ rf_fit2), we can run cross validations as follows:

install.packages("rfUtilities")
library("rfUtilities")

rf_fit2_cv <- rf.crossValidation(
x = rf_fit2,
xdata = train_dat,
p=0.10, # Proportion of data to test (the rest is training)
n=10, # Number of cross validation samples
ntree = 50)

Plot cross validation verses model producers accuracy
par(mfrow=c(1,2))
plot(rf_fit2_cv, type = "cv", main = "CV producers accuracy")
plot(rf_fit2_cv, type = "model", main = "Model producers accuracy")
par(mfrow=c(1,1))

7.4. RANDOM FORESTS IN R 121

Plot cross validation verses model oob
par(mfrow=c(1,2))
plot(rf_fit2_cv, type = "cv", stat = "oob", main = "CV oob error")
plot(rf_fit2_cv, type = "model", stat = "oob", main = "Model oob error")
par(mfrow=c(1,1))

122 CHAPTER 7. SUPERVISED MACHINE LEARNING - PART I

Chapter 8

Supervised Machine
Learning - Part II

8.1 Support Vector Machines

The support vector machine (SVM) is a family of related techniques developed
in the 80s in computer science. They can be used in either a classification or a
regression framework, but are principally known for/applied to classification (of
which they are considered one of the best classification techniques because of
their flexibility). Following James et al. (2013), we will make the distinction here
between maximal margin classifiers (basically a support vector classifier with a
cost parameter of 0 and a separating hyperplane), support vector classifiers
(or an SVM with a linear kernel), and support vector machines (which employ
non-linear kernels).

8.1.1 Maximal Margin Classifier

8.1.1.1 Hyperplane

The concept of a hyperplane is a critical concept in SVM, therefore, we need
to understand what exactly a hyperplane is to understand SVM. A hyper-
plane is a subspace whose dimension is one less than that of the ambient space.
Specifically, in a p-dimensional space, a hyperplane is a flat affline subspace
of dimensional p - 1, where affline refers to the fact that the subspace need not
pass through the origin.
We define a hyperplane as

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 = 0

123

124 CHAPTER 8. SUPERVISED MACHINE LEARNING - PART II

Where 𝑋1, 𝑋2, ..., 𝑋𝑝 are predictors (or features). Therefore, for any observation
of 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝)𝑇 that satisfies the above equation, the observation falls
directly onto the hyperplane. However, a value of 𝑋 does not need to fall onto
the hyperplane, but could fall on either side of the hyperplane such that either

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 > 0

or

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 < 0

occurs. In that situation, the value of 𝑋 lies on one of the two sides of the
hyperplane and the hyperplane acts to split the p-dimensional space into two
halves.

Figure 8.1 shows the hyperplane .5 + 1𝑋1 + −4𝑋2 = 0. If we plug a value of 𝑋1
and 𝑋2 into this equation, we know based on the sign alone if the points falls on
one side of the hyperplane or if it falls directly onto the hyperplane. In Figure
8.1 all the points in the red region will have negative signs (i.e., if we plug in the
values of 𝑋1 and 𝑋2 into the above equation the sign will be negative), while all
the points in the blue region would be positive, whereas any points that would
have no sign are represented by the black line (the hyperplane).

Wee can apply this idea of a hyperplane to classifying observations. We learned
earlier how it important it is when applying machine learning techniques to
split our data into training and testing data sets to avoid overfitting. We can
split our n + m by p matrix of observations into an n by p X matrix of training
observations, which fall into one of two classes for 𝑌 = 𝑦1, .., 𝑦𝑛 where 𝑌𝑖 ∈ −1, 1
and an m by p matrix X∗ of testing observations. Using just the training data,
our goal is develop a model that will correctly classify our testing data using
just a hyperplane and we will do this by creating a separating hyperplane
(a hyperplane that will separate our classes).

Let’s assume we have the training data in Figure 8.2 and that the blue points
correspond to one class (labelled as 𝑦 = 1) and the red points correspond to the
other class (𝑦 = −1). The separating hyper plane has the property that:

𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑝1 > 0 if 𝑦𝑖 = 1
and

𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑝1 < 0 if 𝑦𝑖 = −1
Or more succintly,

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑝1) > 0

8.1. SUPPORT VECTOR MACHINES 125

−2

−1

0

1

2

−2 −1 0 1 2
X2

X
1

Figure 8.1: The hyperplane, .5 + 1𝑋1 + −4𝑋2 = 0, is black line, the red points
occur in the region where .5 + 1𝑋1 + −4𝑋2 > 0, while the blue points occur in
the region where .5 + 1𝑋1 + −4𝑋2 < 0.

126 CHAPTER 8. SUPERVISED MACHINE LEARNING - PART II

Ideally, we would create a hyperplane that perfectly separates the classes based
on 𝑋1 and 𝑋2. However, as Figure 8.2 makes clear, we can create many sep-
arating hyperplanes of which 3 of these are shown. In fact, it’s often the case
that an infinite number of separating hyperplanes could be created when the
classes are perfectly separable. What we need to do is to develop some kind of
a criterion for selecting one of the many separating hyperplanes.

5

6

7

8

2.0 2.5 3.0 3.5 4.0 4.5
X2

X
1

Figure 8.2: Candidate hyperplanes to separate the two classes.

For any given hyperplane, we have two pieces of information available for each
observation: 1) the side of the hyperplane it lies on (represented by its sign)
and 2) the distance it is from the hyperplane. The natural criterion for select-
ing a separating hyperplane is to maximize the distance it is from from the
training observations. Therefore, we compute the distance that each training
observation is from a candidate hyperplane. The minimal such distance from the
observation to the hyperplane is known as the margin. Then we will select the
hyperplane with the largest margin (the maximal margin hyperplane) and
classify observations based on which side of this hyperplane they fall (maximal
margin classifier). The hope is that a classifier with a large margin on the
training data will also have a large margin on the test observations and subse-
quently classify well.

Figure 8.3 depicts a maximal margin classifier. The red line corresponds to
the maximal margin hyperplane and the distance between one of the dotted

8.1. SUPPORT VECTOR MACHINES 127

lines and the black line is the margin. The black and white points along the
boundary of the margin are the support vectors. It is clear in Figure 8.3 that
the maximal margin hyperplane depends only on these two support vectors. If
they are moved, the maximal margin hyperplane moves, however, if any other
observations are moved they would have no effect on this hyperplane unless they
crossed the boundary of the margin.

Figure 8.3: Maximal margin hyperplane. Source:
https://tinyurl.com/y493pww8

The problem in practice is that a separating hyperplane usually doesn’t exist.
Even if a separating hyperplane existed, we may not want to use the maximal
margin hyperplane as it would perfectly classify all of the observations and may
be too sensitive to individual observations and subsequently overfitting.

Figure 8.4 from James, et al. (2013) clearly illustrates this problem. The left
figure shows the maximal margin hyperplane (solid) in a completely separable
solution. The figure on the right shows that when a new observation is intro-
duced that the maximal margin hyperplane (solid) shifts rather dramatically
relative to its original location (dashed).

8.1.2 Support Vector Classifier

Our hope for a hyperplane is that it would be relatively insensitive to individual
observations, while still classifying training observations well. That is, we would
like to have what is termed a soft margin classifier or a support vector
classifier. Essentially, we are willing to allow some observations to be on the
incorrect side of the margin (classified correctly) or even the incorrect side of
the hyperplane (incorrectly classified) if our classifier, overall, performs well.

128 CHAPTER 8. SUPERVISED MACHINE LEARNING - PART II

Figure 8.4: The impact of adding one observations to the maximal margin
hyperplane from James et al. (2013).

We do this by introducing a tuning parameter, C, which determines the number
and the severity of violations to the margin/hyperplane we are willing to toler-
ate. As C increases, our tolerance for violations will increase and subsequently
our margin will widen. C, thus, represents a bias-variance tradeoff, when C
is small bias should be low, but variance will likely be high, whereas when C is
large, bias is likely high but our variance is typically small. C will be selected,
optimally, through cross-validation (as we’ll see later).

The observations that lie on the margin or violate the margin are the only ones
that will affect the hyperplane and the classifier (similar to the maximal margin
classifier). These observations are the support vectors and only they will
affect the support vector classifier. When C is large, there will be many support
vectors, whereas when C is small, the number of support vectors will be less.

Because the support vector classifier depends on only the on the support vectors
(which could be very few) this means they are quite robust to the observa-
tions that are far from the hyperplane. This makes this technique similar to
logistic regression.

8.1.2.1 Example

In our example, we’ll try and classify whether someone scores at or above the
mean on the science scale we created earlier. To do support vector classifiers
(and SVMs) in R, we’ll use the e1071 package (though the caret package could
be used, too).

check if e1071 is installed
if not, install it
if (!("e1071" %in% installed.packages()[,"Package"])) {

8.1. SUPPORT VECTOR MACHINES 129

install.packages("e1071")
library("e1071")

} else {
library("e1071")

}

The svm function in the e1071 package requires that the outcome variable is a
factor. So, we’ll do a mean split (at the OECD mean of 493) on the science
scale and convert it to a factor.

pisa[, sci_class := as.factor(ifelse(science >= 493, 1, -1))]

While, I’m coding this variable as 1 and -1 to be consistent with the notation
above, it doesn’t matter to the svm function. The only thing the svm function
needs to perform classification and not regression is that the outcome is a factor.
If the outcome has just two values, a 1 and -1, but is not a factor, svm will
perform regression.

We will use the following variables in our model:

Label Description
WEALTH Family wealth (WLE)
HEDRES Home educational resources (WLE)
ENVAWARE Environmental Awareness (WLE)
ICTRES ICT Resources (WLE)
EPIST Epistemological beliefs (WLE)
HOMEPOS Home possessions (WLE)
ESCS Index of economic, social and cultural status (WLE)
reading Reading score
math Math score

We’ll subset the variables to make it easier and in order for the model fitting to
be performed in a reasonable amount of time in R, we’ll just subset the United
States and Canada.

pisa_sub <- subset(pisa, CNT %in% c("Canada", "United States"), select = c(sci_class, WEALTH, HEDRES, ENVAWARE, ICTRES, EPIST, HOMEPOS, ESCS, reading, math))

To fit a support vector classier, we use the svm function. Before we get started,
let’s divide the data set into a training and a testing data set. We will use a
66/33 split, though other splits could be used (e.g., 50/50).

130 CHAPTER 8. SUPERVISED MACHINE LEARNING - PART II

set a random seed
set.seed(442019)

svm uses listwise deletion, so we should just drop
the observations now
pisa_m <- na.omit(pisa_sub)

select the rows that will go into the training data set.
train <- sample(1:nrow(pisa_m), 2/3 * nrow(pisa_m))

subset the data based on the rows that were selected to be in training data set.
train_dat <- pisa_m[train,]
test_dat <- pisa_m[-train,]

To perform support vector classification, we pass the svm function the kernel
= "linear" argument. We also need to specify our tolerance, which is repre-
sented by the cost argument. The cost parameter is essentially the inverse of
the tolerance parameter, C, described above. When the cost value is low, the
tolerance is high (i.e., the margin is wide and there are lots of support vectors)
and when the cost value is high, the tolerance is low (i.e., narrower margin).
By default cost = 1 and we will tune this parameter via cross-validation mo-
mentarily. For now, we’ll just fit the model.

svc_fit <- svm(sci_class ~., data = train_dat, kernel = "linear")

We can obtain basic information about our model using the summary function.

summary(svc_fit)

##
Call:
svm(formula = sci_class ~ ., data = train_dat, kernel = "linear")
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 1
##
Number of Support Vectors: 2643
##
(1322 1321)
##
##

8.1. SUPPORT VECTOR MACHINES 131

Number of Classes: 2
##
Levels:
-1 1

We see there are 2782 support vectors: 1390 in class -1 and 1392 in class 1. We
can also plot our model but we need to specific the two features we want to plot
(because our model has nine feature). Let’s look at the model with math on the
y-axis and reading on the x-axis.

plot(svc_fit, data = train_dat, math ~ reading)

−
1

1

200 300 400 500 600 700 800

300

400

500

600

700

o

o o

o

o

o

ooo
o o

o

o
o

o o

o

o
o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o
o

o

o

o

oo

o
o

o
o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o
o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo
o

o

o

o

o

oo

o o

o

o

o

o

o

o
o

o

oo

o

o
o

o

o

o

o o

o

o

oo

o
o

o o

o

o

oo

o

o
o

o

oo

o

o

o
o

oo

o

o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o o

o

o

o

o

o

o

o

oo

o

o

o
o

o

o

o

o

o o

o

o

o

o

o

o

o

o
o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o
o

o
o

o

o

o

o

oo
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
ooo

o

o
o

o

o o o

o

o o

o

o

o

o
o

o

o

o

o

o

o

o

oo

o

o

o

oo
o

o
o

o

o

o

o
o

o

o

o

o
ooo

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

ooo

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o ooo

o

o

o

o

o

o

o
o
o

o

o

o

o

o

o

oo

o

o

o

o

o
oo

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o
o

o

o

o

o

o

o o

o

o
o

o

oo

o
o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

oo

o

o

o
o

o

o o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o
o

oo

o

oo

o
o

o
o

o

o
o

oo

o

o

o
o

o

o

o

o

o

o

oo

o
o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o
o

o
o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo
o

o
o

o

o

o

o

o

o
o

o o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

o

o

o

o

o o

o

o
o

oo

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

oo

o
o

o

oo o

o

oo

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o
o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

oo o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o
o

o

o

o

o

o
o

o
oo

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

oo
o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

oo

o
o

o

o

o

o

o

o

o

o

o

o

o o

o

o
o

o
o

o

o

o

oo
o

o

o

o

o
o

o

o

oo

o

o
o

o

o

o

o
o

oo
o

o
o

o

o

o

o

o

o

o

o

o

oo
o

o

o
o

o
oo

o
o o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

ooo

o
o

o

o

o

o

o

o

o
o

o

o

o
o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o
o

oo

o
o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o o

o

oo

o

o

o

o
o

o

o
o

o

o

o
o

o o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo
o

o
o

o

o

o

o
o

o

o

oo
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o
o

o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o o o

o
o

o

o

o

o
o oo

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o o

o

o
o

o
o

o
o

o

o

o

o o

o

o

o

o

o

o

o
o

o

o
o o

oo

o

o

o
o

o
oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o o

o
o
o

o

o

o

o

o

o

o

oo
o

o

o

o

o
o

o
o

o

o

o

oo

o

o

o

o

o

o o

o

o

o

o

o

o
o

o

o

o

o

o
o

oo

o

o

o

o
o

o

o

o

o

o

o

o o

oo o oo

o

o

o

o

o

o
oo

o

o

o

o

oo o
o

o

o

o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o
o

oo

o

o

o
o

o

o
oo

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o oo

o

o

o

oo

o
o

o

o
o

o

o o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o o o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o
o

o
o

o
o

o o

o

o

o

o

o
oo

o

o

o

o

o

o

o o

o

o
o

o
o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o

o

o

oo o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o
o

o

o
o

o

o

o

o

o

o

o

o o

o

o

o

o
o

o

o

o

o

o

oo
o

o

o

o

oo

o

o o

o

o

o

o
o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

oo

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o
o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o
o

o

o

o

o

o o

o

o

o

o

oo
o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
oo

ooo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o o
o

o
o

oo

o
o

o
oo

o

o

o
o

o

o

o

o

o
o

o

o

o
o

o o

o

oo

o

o
o

o

o

o

o
o

o

o

o

o
o

o

o

o
o

oo

o

o o

o

o

o

o

o
o

o

o

o

o

o o

o

o

o

oo

o

o

o

o

o

o

o

o

o

oo

o

oo
o

o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o

o

oo

o

o

o
o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

oo

o

o

oo

o

o

o

oo o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o oo

o
o

o

o

o

o

o

o

oo

o
oo

o

o

o

o

o
o

o

o
o

o
o

o

o
o

o
o

o
o oo

o
o

o

o

o

o
o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

oo o

o o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

oo

o

oo

o

o

o

o

oo

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o oo

o

o

o

o

o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

oo

o
o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o o
o

o
o

o

o

o

oo

o

o

o

o
oo

o

o

o

o
o

o o

o

o

oo

o

o

o

o

o

o

o

o
oo

o

o

o

o

ooo

o
o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o
o

o

o

oo
o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

ooo

o

oo

o

o
o o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o
o

o

o

o

o

o
o

o
o

o

o

o
o

o

o

oo

o

o

o
o

oo

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o
o

o

o
o

o

o

o

o

o

o

o

o
o

oo

o

o
o

o

o

o o
o

o

o

o
o
o

o
o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o
o

o

o

o

oo

o

o

o
o

oo
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o o o

o

o

o

o
o

o

o

o
o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o
o

o

o o

o

o
o

o

o

o

o

o

o

o

o

o

o

o oo

o
o

o

o
o

o
oo

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

oo

o

o

oo

o

o
o

o
o

o
o

o
o

o

o

o

o o

o
o
o

o

o
o

o

o

o
o

o

oo
o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o o

o

o

o

o

o
o

o

o

oo
o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

oo

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

oo

o

o
o

o

o o
o

o
o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o
o

o

o

o

o

o

o

o

o
o o

o

o
o

oo
o

o

o

o

oo o
o

o

o

o

o

o

o
o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o o

o

o
o

o

o

o

oo
o

o

o

o

o

o
o

o

oo

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
oo o

o

o

o

o

o

o

o

oo

o

o

o

oo

o
o

o

o
o

o

o

o
o

o

o

o

o

o o
oo

o

o

o

o

o

o

o

o

o

o

o

ooo

o
o
o

o

o

oo

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o
oo

o
o

o
o

o o o

o

o

o

o

o

o

o

o

o
o

o
o

o

o
o

o

o

o

o

o

oo

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

oo ooo

oo

o

o

o

oo

o
o

o
o

o

o

o

o

o

o
oo

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

oo
o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o
o

o

o

o

o oo

o

o

ooo
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o
o

oo

o

o

o

o

o

o

o

oo

o

o
o

oo

o
o

o

oo

o o

o

o
o

o

o

o

o

oo

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

oo
o

o
o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o
o

o

o

o

o

o

o
o

o

o

o
o

o

o
o

o
o

o
o o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o
o

oo

o

o
o

o

oo
o

o

o

o o oo

o

o

o
o

o

o

o

o

oo

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
o

oo
o

oo

o

o

o

o

o

o

o

o

o

o
o

oo
o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o o
o

o

o

o
o

o
o

o
o

o

o

o

oo

o

o
o

o

o

o

o

o

o

ooo

o

o
o

o

o

o

o
o o

o

o o

o

o

o
o

o

o
o

o

o

o
o

o

o
o

ooo

o

o

o

o

o o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

oo
o

o

o

o

o

o

o
o

o

o

o
o

o o

o

o

o

o
o

o

o

o

oo
o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o o
o

o
o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o
oo

o

o

o

o

o

o
o

o

o

o

o o

o
o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

ooo

o

o

o

o

o
o

o

o

o

oo

o

o o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

oo

o
o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o
o

o o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o
o

o

o

o
o

o

o

oo

o

o

o

o
o

o

o

o

o

oo

o

o

o

o

o

o o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o oo
o
o

o

o
o

o

o

o

o oo

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o
o

o
o

o

o
o

o
o

o

o

o
o

o
o

o

o

o

o o

o

o

o
o

o

o
o

o

o

o

o
o

o o

o

o
o

o
o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o
o

o
o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

oo

o

o

o

o

oo
o

o

o

o

o

o

o

o

o o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o
o

o

o

o

o

o

o
o

o

o

o

oo

o
o

o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

oo
o

o

o

o

o

oo

o

o

oo

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o
o

o o

o

o

oo

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o
oo

o

o

o

o

o

o
o oo

o
o o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

oo

o

o o

o

o
o

oo

o

o

o

o

o

o

o
o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

oo

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

o

o

o

o

o o

o
o

o

o o

o

o

o

o

o
o

o

o
o

o

o
o

oo

o

o

o

oo

o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo o
o

oo

o

o

o

o

o

o

o
oo

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o
o o

o

o oo

o

o

o

o

o

o

o

o
o

o

o
o

o

o
o

o

o

o

ooo

o

o

o

o

o

o

o

o

oo
o

o

o

oo

oo
o

o

o

o
o

o

o

o

o

o

oo

o

o

o

o

o

o o

o
o

o

o
o o

o

o

o

o

o

o

o

o

o o

o
o

o

o
o

o

o

o o

o

o o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o
o

oo o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o
oo

o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o
oo

oo

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o o

o

o

o

o

o
o

o

o

o

o
o

o

o o

o

o

o

o

o

o

o

o

o

oo

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

oo

o

oo

o

o
o

o

o

o

o

oo

o

o o

o

o

o

o

o

o
o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo
o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

oo

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

oo o
o

o

o

o

o

o
o oo

o

o

oo

o
o

o

o

o

oo
o

o

o o

o

o

o
o

o

oo

o

o

o

o

o

o

o

o

o

o
oo

o

o

o

oo
o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o
o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o
o

o

o
o

o

o
o

o o

o

o
o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o o

o

o

o

o o

o
o

o
o

o

oo

o

o

o

o

o

oo

o

o

o
o

o

o

o o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o
oo

o

o

o

o

o

o

o

o

o

o

oo o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo
o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

oo

o

o

o

o
o

o

o

o

o o

o
o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o o

o

o
o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o o

o

o

o
o

o
o

oo

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o
o

oo

o

o

o

oo
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o
o

o

o

o ooo

o

o

o
o

o

o
o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o
o

oo
o
o

o

oo

oo

o
o

oo
o

o

o

o

o

o
o

o
o o

o o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o
o
o o

o

o
oo

o

o

o

o

o

o

o
o

o

o o

o

o
o

o o

o o

o

o o o

o

o o

o o

o
o

o

o

o o

o

o

o

o

o

o
o

o
o

o

o

o
o

o

o

o

o
o o

oo o

o

o

o

o
o o

o

o

o

o o

o

o

oo

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

oo
o

o
o

o

o

o

o

o

o

o

ooo

o
o

o

o

o

o

o

o

oo

o
o o

o

oo

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o
oo

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

oo o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
oo

o
o

o

ooo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o
o o

o

o

o

o

o

o o
o

oo

o
o

o

o

o

o

o

o

o
oo

o

o

o o

o

o

o

o
o

o

o

oo

o

o

o

o
oo

o

o

o

o

o

o
o

o

o

o

o

oo

o

oo

o

o

o

o

o

o

o

o
o

o
o

o

o
oo

o

o

o

o

o

oo

o
o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

oo

oo
o

o

o

o

o

o
oo

o o

o

o

o

o

o o
o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

oo
o

o

o

o

o

o

o

o

o

o

o

o

o

o oo

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o o
o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o
o

o
o

o

o

o

o

o

o

o

oo
o

o

o o
o

o

o
o

o

o

o

o o

o

o
o

o
o

o

o

o

o

o
o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

oo

o

o

o

o
o

o
o

o

oo o

o
o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
oo o

o

o
o

oo

o

oo
o

o
o

o

o

o
o

o

o

o

o

o

o

o

ooo

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o o
o

o
o

o

o

o

o

o

o

o

o

o

o o

o o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

oo

o

o
o

o

o

o

o

o

o
o

o

o

o
oo

o

o

o

o

o
o

o
o

o

o

o

o

o o
o

o

o

o

o

o

o

o o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o
o oo

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o
o o

o o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

oo

o

o

o

o o

o

o

o o

o

o

o
o

o

o
o

o

o

o

o

o

o o

oo

o
o

o

o
o

oo

oo

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o
o
oo

o

o

o

o

o

o

o

o

o

o

o o

o o
o

o

oo

o
o

o

o

o

o

o

o

o
oo

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o
o

o

o
o

o

o

o
o

o

o

o
o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o o

o
o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o
o

o

o

o

oo

o

o

o

o
o

o

o o

o

o

o

oo o

o

o

o

o

o

o
o oo

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o o

o

o
o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

oo o

o

o
o

o

o

o

o
o

o

o

o

o
o

o

o
o

oo
o oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o
o

o

o
o

o

o

o

o
o o

o

o
o

o

o

o

o

o

o

o

o

o

o o

o

o o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o
oo

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o
o

o

o
o

o
o

o
o

o
o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o o
oo

o

o

o

o

o

o

o

o
oo

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o
o

o

o
o o

o o

o

o

o

o o

o

o

o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

oo
o

o

oo

o

o

o

o o

o
o

o

oo o

o
oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o
o

o

oo
o

o

o

o

o

o

oo

o

oo

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o o

o

o

oo

o

o

o

o
o o

o
oo

o

o

o

o

o

o
ooo o

o

o

oo

o

ooo o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

ooo

o

o
o

o o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

oo

o

o o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

oo o

o

o

o

o

o

o o

o

oo

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o
o

oo

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
oo o

o

o
o

o

o

o

oo o

oo

o

o

o

o
o

o

o
oo

o

o

o

o

o

o

o

o

oo

o

oo
o

o

o

o

o

o

o

oo

o

o

o

ooo o

o

o
o

oo

o o
o

oo

o

o

o o

o
o

o
o
oo

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o o

o

o

o

o

o

o

o
o

o

oo

o

o
o

o
o

o

o

o

o

o

o

o o
o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

oo

o
o

o

o

o

o

o

o o

oo

o

oo
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o oo

o

o

o

o

oo
o

oo

o

o

o

o

oo

o

o

o

o
o

o

o

oo
o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o o

o

o

o

o

o

o

o
o

o

o

o

o

ooo

o

o

o

o

o

o

oo

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o
o o

o

o

o

o

o
o

o

o oo

o

o

o

o

o

o
o

o

o

o

o

oo

o

oo
o

o

o
o

o
o

oo

o

o

o o

o
o

o

o

o

o

o
o

o

o

o

o

oo

o

o

o

o
o

o

o

o
o

o

o

o

o
o

o

o

o

o

o
o

o

o
o

o

o
o

o

o

o
o

o

o

o

o

o

o

o
o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

oo

o
o

oo

o

o
o

o

o

o

o

oo
o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

oo o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

oo o
o

o

o

o

o o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

o

oo o

o
o o

o

oo

o

o

o

o

o
o

o

o

o

o

oo

o

o
o

o

o

oo

o
o

o

o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

o

o
o o

o

o
o

o

o
o

o

o

o

o
o

o

o
o

o

o
o

o

o

o

o
o

o

oo

o
o

o

o

o o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

ooo o

o

oo

o
o

o

o

oo

o
o

o

o

oo

o

o

o o

o
o

o

o

o

o

o
o

o

o
o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o
o

o

o

o
o

o
o

o

o

oo

o

o

o

o
o

o

o
o

o

o

o
o

o

o

o

o o

o

o
o

o

o

o

o

o

o o

o
o

o

o

o
o

oo

o

o

oo

o

o

ooo

o

o

o o

o

o

o o
o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o
o

o

o
o

o
o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o
o

o

oo
ooo

o

o
o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o

o
o

o

o o o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o
oo

o

o

o

o

o

o

o o

o

o
o

o

o

o
o

o

o

o

o

o o

o

ooo

o
o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o
o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o
o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

oo

oo

o
o

o

o
o

o

o

o
o

o

o

o
o

o o
o

o

o

o

o

o
o

o

o

o

o o

oo

o

o

o
oo

o o

o

o

o
o

o
o

o

o

o

o

oo

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o
oo

o

o

o
o o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

oo

o

o
o

o

o

o
o

oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o o

o
o

o

o

oo

o

o
o

oo

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
oo

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o
o

o
oo

oo

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

oo

o

o

o
o

o

o o

o

o

o

o

o

o

oo

o

o

o

o
o

o
o

o
o

o

o

o

o

o

o o
o

o

o
oo

o

o
o

o

o
o

o
o o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

oo ooo

o

o

o
o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o
o

o

o

o
o

o

o

o
o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

oo
o

o
o

o

o
o

o

o

o

o
o
o

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o o
o

o

o

o o

o
o

o

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
ooo

o

o

o

o

o

o
o

o

o

o

o

oo
o

o

oo

o o

o

o

o

oo

o

o

o
o

o

o

o

o o

o

o
o

o

o

o o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o

o

o
o

o

o

o

o

oo

o

o

o

o o o
o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o
o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
oo

o

o
oo

o

o

o

o

o

o

o
oo

o
o

o

o

o

o

o

o

o

o

o
o

o

o

oo
o

oo o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o o

o

o
o

o

o
o oo

o

o
o

o

o

o

o

o

o

o

o
oo

o

oo

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

o

o

o

o

o
o
o

o

o

o
o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o
o
o

o
o

o
o

o
o

o

o

o

o

o

o
o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o
o

o o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o
o

o

o
o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o

o

o
o

o o

o

ooo

o
o

o

o

o

o

o
o

oo

o

o

o

o

o

o o

o o
o

o o

o

o

o

o

o

o o

o

o

o
oo

o
o

o

o

o

o

o
o

o o

o

o

o

o

o
o

o

o oo
o

o
o

oo
o

o o

o

oo

o

o

o

o

o
o

o

o

o

o

oo

o
o

o

o
o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

o
o

o
o

oo

o

o

o o
o

o

o

o

oo

o

o

o
o

o

o

o

o

o

o
o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o
o

o

o

o

o

o
o

o

o

oo

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o

o

oo

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o
o

o o

o
o

o

oo

o
oo

o

o
o

o

o

o
o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o
oo

o

o

o

o
o

o o
o o

o

o

o
o

o

o
o

o

o

o

o

o

o o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o
o

o

o

o

o

oo
o

o

o

o

o

o

o

o

o

o

o
o o

o

o
o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

ooo

o

o
o

o

o

o

o

oo

o
o

o

o

o

o o
o o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo
o

o

o
oo

o
o

o

o

o

o
o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o
o

o

o
o

o

o
o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o
oo

o

o

o
o

o o

o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o o

o

o

oo
o

o

o

o
o

o

o

oo
oo o

o
o

o

o
o

o
o

ooo

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o
o

o

oo

o

o

o

o

o

oo

o

o

o

o o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o
o

o

o

ooo

o

o

o
o

o

o

o

o

o

o

o

o

o

o o

oo

o

o

o

o

o

o
o

o

o

o

o

o
oo

o

o

o

o
oo

o

o

o
o

o

o

o o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

oo

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

ooo
o

o

o

o

o
o

o o

oo

o

o

o o
o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

oo

oo

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o
o

o

o o
o

o

o

o

o

o
o

o

oo

o

o
o o

o

o

o

o

o

o o

o

o

o

o o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
ooo

o

o

o

o
o

o o

o

o

o

o

oo

o

o
o

o
o

o

o

o
o

o o

o

o

o
o

o

o
o

o

o o

o
o

o
o

o

o
oo

o

o

o

o

o

o
o

o o

o
o

o

o

o

o

o
o

o

o
o

o

o

o o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

oo

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
o

o o o
o

o
ooo

o

o

o

o

o

o o

o

o

o

o

o
o

o

o o
o

o

o

o
o

oo

o

o

o

o
o

o
oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

oo

o

o

o
o o

o
o

o

o

o

o

o

oo
o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o
o

o

o

oo o

o o

o

o

o

o

o o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o
o

o
oo
o

o

o

o

o
o o

o

o

o o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o
o

o

o

o

o o

o

o

oo

o

o

o

o

o

o

o

o

oo

oo

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o o

o

o

o

o

o

o o
o

o

o

oo

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o
o
o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o
o

o

o
oo

o

o

o

oo o
o

o

o

o

o

o
o

o

o

o

oo
o

o

o
o

o

o

o

o

o

o

o

o
o

o

o
oo

oo

o

oo

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o
o o

oo

o

o

o

o
o
o

o
o

o

o

o

o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o
o

o

o

o

o

o

o

o

o

o
o

oo o

o

o

o
o oo

o
o

o

o

o

o
o

o

o

oo

o
o

o
o

o o

oo

o

oo

o
o

o

o
o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o

o

o o
o

o

o

o

o

o

o

oo
o

oo

o

oo

o
o

o

o
o

o

o

o
oo

o

o o

o

o

o

o

o

o
o

o
o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

o

o

o

o

o o
o o

o

o

o
oo

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o
o
o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

o

o
o

o
o

oo
o

o
o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

oo

o

o

o oo

o

o

o

o

o

o

o

o

o o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

oo
o

o

o

o
o

oo

o

o

o
o

o

o

o
o

o

o
o

o

o

o

o

o
o

o o
o

o
o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o
o

oo

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

oo

o

o

o
o

o

o

o

o
o

o

o

o

o
o

o

o

o

o o
o

o

o

o

o

o

oo

o

o
o

o

o

o

o

oo

o

o

o

o

o o
o

o
o

o

o

o
o

o

o

o

o

o

o

oo

o

o o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o o

o

oo

o
o

o

o

o

o

oo

o

o oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o
o

o

oo
o

o

o

o

o

o
oo

o

oo

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o
o

o

o

o

o oo

o

oo

o
o

o

o o

o

o

o

o
o
o

o

oo

o

o

o

o o

o

oo

o

o

o
o

o

o o

o o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o o

o

o

o

o
o

o

o

o

o o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
oo

o

o

o

o

o

o

o o

o

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o

oo

o
o

o

o

o

o
o

o
o

o
oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
oo

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o o
o

o
o

oo
o

o

o

o

o

o
o

o

o

o

o o

o

o o

o

o

o

o

o

o

o

o

o

o o

o

o o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o o
o

o
o o

o

o
o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o
o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o o
o

o

oo

o

oo o
o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo
o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

oo

oo
oo o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

oo
o

oo

o oo

o

o

o

o

o
o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o o

o

o

o

oo

o

o
o o

o

o

o

o

o

o

o

o

oo oo

o

o

o
o

o

o

o

o

o

oo

o

o

o
o

o

o

o

o

o

o

o
o

o oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o o o

o

o

o

oo

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o o

o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o
oo

o

o

o

oo

o
o

o
o

o

o

o

o
o

o

o

o

o

o
o

o o

o

o

o
o

o

o

o

o
o

o o

o

o

o

o
o

o

o

o ooo

o

o
o

o

o o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o

o

o

o o

ooo

o

o

o

o

o

o
o

oo

o
o o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o oo

o

o

o

o

o
o
o

o

o

o

o
oo

o

o

o

o

o

o o
o

o

o

o

o o

o

o

o

o o

o
o

o

o
o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o
o

o

o

o

o

o

o

oo

o
o

o
o
o

o
o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o o

o

o

oo o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o
o

o

o
o

o

o

o

o

o

o
o o

o

o

o
o

o

o

oo
o

o

o

o

o

o
o

o

o

o

o

o

o

o o

o

o

o

o

o
o

o

o

o

o

o

o
oo

oo

o
oo oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o oo

o

o

o

o
o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o o
o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

oo
o

o

o

o

o

oo
o

o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o
o

o

o

o
o

o
o

o

o

o

o

o

o
o

o

o

o
o

o

o

oo o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o

o

oo
o

o

o
o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

oo
o

o

o

o
o

oo

o

o
o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o o

o

o

o
o

o

o
o

oo

o

o

o

o

o

o

o
o

o

o

o o

o

o

o

o

o
oo

o

o
o

o

o
o

o

o

o

o o

o

o

o

oo

o

x

x
x

xxx
x x

x
x

x

x

x xx
x
x

x
x x

x

x

x
x

x

x

x
x

xx

x

x x x

x

x

x

x
x

xx

x
x

xxx

x
x xx

x
x

xx

x

x x

x
x

x
x

x

x
x

x
xx

x
xxx

x

x
x

xx

x

x xx

x

x

x
x

x
x xx xx
x

x

x x

x x

x

x

x
xx

x

x

x
x

x x
x

xx x x
x

xx x
xx

x

x
x

x x

x
x

x
x

x

x
x

x

xx
x

x
x x

x

xx
x

x

x

x x

x
x

xx

xx
x

xx
xxx x

x

x x

x
x

x

x
x

x

x
xxx

x
x

x
x

xxxx

xx
x

x

x

x

x x x

x

x

x

x x
x

x xx
x

x
xx

xx
x

x

x

x

xx
xx

x
x

x

x
x

x
x

x
x x x x

xx

x

x

x

x
x x

xx
x

x
x

x x
x xx
x

x
x

x
x xx

x

x

x
xx

x

x

x

x

xx
x

x
x

x
xx

xx x
xxx

x
x

x
x

x

x
x xx

x

x

xx

x
x

x

xx
x

x
x

xxx
x

x

xx
x

x

x x xx

x

x

x

xx

x

xx
x

x

x

x

x
xxx

x
x

x

x
x

xx

x
x
x x

x

xxx

x
x

x

x
x

x

x

x

x
x xx
x

x
xx

x
xxxx

x
x

x
x

xxxx

x
x
x

x
x

x x
x

x

x x
xxx

xxx

x

x

x
x

x
xxx

x
x

x
xx

x
x

x
x x

x

x xx
x

xx x
xx

xxx
x

xx
x

xx
x
x

x x

x

x
x

x
xx
x xx

x
x
x

x

x
x

x

x xxx xx x
x

x
x x

x
x

x
x

x

x
x

x

xx

x

x

x
x

x

x

xx

x

xxx
xx

x

x

x
x x

xx

x
x

x

xx

xxx x x

x
x

x
x

x xx

x

x

x

x

x

x

xxx
xx x

x

x

x
xx

x

xx
x
x

xx

x
x

x
x

x
xxxx

x
x

x

x

xx

x
x x

x

x

x

x

x

x
x

x
x

xx
x

x
xxx

x

x

x

x
xx

x
x

x

x xx
x

x
x

xx

x
x

x

x

x

x

xx

x
x

x

x
x

x x
x
x

x
xxx xx

xx x

x xx
x

x

xxx
x x

xx
x

x
x

x
x x

xx
x

x

x
x

x
x

x

x

x

xx
x

x

x
x xx

x

x x
x

x

x

x

x
x

xx
xxx

x
x

x

x
x

xx

x

x
x

x

x

x
x
x

x
x

x

x

x

xx
x

x
x

x

x
xx

x
xx

xx
x

x xxx

x
x

x
x

x
x

x

x x

x
x

x
x x

x

x
x

x

x
x

x x

x

x xxxxx x

x
xx x
xx

xx

x

x

xx

x

x

x

x
x

x
x

x

x
x

x
x

x
x

xxx
x xx x

x

x

x

x
x

x
x

xx x

x

xxx
x

xx
x

xx

x
x

x
x
x

x

x
x

x
x

x xx x
x

xx

x x
x

x
x

x

x

x

x
xx

x

x
xx x

x
x

x

x

x x

x x

x
x

x
x

x
x

x
x xxx

x

x

x

x
xx

xx

x x

x

xx
x

x

x
x

x

x

x

x
x
x
xx

x

xx
xx

x x
x x

x
x

x
x x

x

xx xx

x
x

x
x

xx

x

x
xxx xxxx

x
xx

x

x
x xx x

x

x

x

x

x
x x

x

x
x
xx
xx x

x x
x
x

xx

x
x

xxx
x

x
x x

x
x

x
xx x

x

xxx
xxxx x

xx
x x

x

x
x

x
x

x
x

x

x

x

x

x

xxx
xx

x x
x

x

x
x

x

x

xx
x
x
xx

x

x

xx
x
x

xx

x

x
x
xx

x

xx
x xx

x
xx

xx
xx

x

x
xx

x x
x
x

xx
x

x
xx

x

x
x

x
x

x

xx
x

xx

x

xxx

x x
x

x

x
x

x
xx

xx
x

x
x

x
x
x

x
x

xx

x
x

x
x

x
x

x

x x
x

xx
x

xx

x

x
x

x

x
x x

x

x

x
x

x
xx

x

xx

x
x x

x
x
x

x
x x

x

x
x

x
x

x

x

x

x x
x

x
x

x xx

x x

x

xx

x
x
xx
xx

x

x

x

x
x

x

x

xx xx
xx

x
x
x

x

x xx
x

x
x

x
x

x
x

x
x

x

x
x

x
x

x

x
x

xx
x

x
x

x

x

x

x

x
x

x
xx

x

x

x
x

x

xx
x

x

x
xx

xx
x

x

x
x

x

x
x

x
xx x

x
x

x x
x

x
x
xx

x

x

x

x

xx

x

x

x

xx

xx

x
x

x
x

xx

x

x

x
x

x

xx
x

xx

x
x

x
x

xx

x xx

x

x

x
x

x

x

x

x
x

x

x
x
x

x
x

x

xx
xx

x x
x

x

x
x

x
xx x
x

xx
x

x
x

x
xxx

x

x

x

x

x

x

x

xx

x x
x

x x

x
x

x
x

xx

x

xx xx

xx

x
x

x

x
x

x
xx

x

x

x

x

xx
xx

x xx
xxx x

x
x

x x
x

x
x x

xx

x

x

x

x
x
x

x
x

x

x
xx

x
x

x
x

x

x
x

x

x

x
x

x
x

x
x

x

x

x

x

x

xx
x
x

x
xx

x

x
xx x

x
x
x

x
x

x x

x x x
x

x
x

x

x

x

xx x

x
x

x
x
xx x

x
x

x
x xx

x

x xxx

x

x
xx x

x
x

xx
x

x

x
x

x

x
x

xx x
x

x
x

xx
x x

x
x

x
x
x
x xx

x

x
x xx

x

x
x

x

x

xx

x

x

xx x
x x

x x
x

x
x x

x
xx

x

x
x

xx

x

x

x
x

xx
x

x
xx

x xx

x

x

x

x x
xx x
x
x

xx

x

x

x

x

xx

x x

x

x

x

x

x

x

x

x

x
x

x

xx
x

xxx
x

xx
x x

x
x

x
x

x x x
xx

x

xx
x

x
x

xxx

x
x

xxx
x

x
xx x

x
xx

x

x

x

x

x
x

xx x
x

x

xx

x
x

x

x
x xx

x x
x

x
x

xx

x
xxx x

xxx x
x

xx
x

xx
xxx

x

x
x

x
x

x

x

x

x
x

xx

x

x

x

x
x xxx

x
x

x

x

x x
x

x
x

x
xx

x

x

xx

x

xx

x
x
xx

x
x

x

x
x

x

x
x

x
xx

x

xx

x
x

x
xx

x

x

x

x
x

x
xxx x

x
x

x
x x

x

x

x
x

x

x

x
x

x
x

xxx
x

x
xx

x
x
xx

x

x

x
x

xxx

x

x
x

xx

x
x

xxx
xx x xx

x

x

x

x
x x

x
xx

xxx

xx x
xx

xxx

x

x x
xx

xx
xx

xx x
xx

x
x

x
xx

x
x x

x

x

x

xx xx
xx

x

x
x

x

x

x x
x xxx

x

x
xx

xx
x

x x

xx
xx

x
x

x

x
x

x

x

x

x

x
x

xxxx

x

x
xx

x
xxx

x

x x

x

x

x
xx

x
x x

x

xx
x

x
x

x

x
x

xx

xx
xx
x
xx

x
x

x

x xx x
x

x

x
x

x
x

x
x

x xxx
xx

x

x xx
xx

x

x xx
x

x
xx x

x

x
x xxx

x

xxx xx
x
x x

xx x
xx xx xxx xx

xx

x
xxx x
xxx

xx xx
xx x

x
x

x

x

x
x

x
x

x

x

x x
x xxx

x
x

x

x

x x

x

xx

x

x
x

x

x
x

x
xxx

x

x

x
x

x
x

x
xx xx
x

x
x
x

xx

xxx
xxx

x

x

x
x

x x
x

x

x
x

x xx
x

x

x

xx

xx

x

x
x

x
x

x
x

x

x
x

x
x

x

x

x
x

x
xxx x

x

x
x x
xx

xx

x

x

x

x
x xx

x

x

x

x
x

x
x

x

x
x

x xx

x

x x
x

x
x x

x
xx

x
x

x

x

x
xx

x

x
x

x
x

x
x

x

x
x x

x

xx

xx x
x

x x
x xx

x

x

x
x
xx

x

x

x

x

x
x

x

x

x

x

x

x
xx

x
xx

x

x
x

x

xxxx x
x

x
x

x
x

x

xx

x

x
x

x

x
x xx

x
xxx

xx x
x

x

x

xx
x

x

x
x

xx
x

xxx
xx

x

x

x

x

x

x

xx
x

x
x

x
xx

x
x

x x
xx

x
xx xx

xx

x x x

xx x
x xx

x
xxxxxx

x
x
x

x xx
x

x x
xx

xx

x

x
x x

x
xxxx xxx

x
x x

x

x
x

x

x
xx xx xx

x x

x

x
xx

x
x

x

x x

x

x
x
xx

x
x

x

x
x
x x

xx

x

x
xx

x

x

x

x
xx

x

x
x

xx
x

x

x

x
x

x
x

x

x

x

x
x
x
x xxx

xxx
xx

xx
x xx

x
x xxx xx

xx
x

x
x

x x
x x x

x
x

x

xx

xxx

x x
x

x

x

x
x

x

x
x

x x xx x
x

x
x
x

x
x
x

x

x

x
x

x

x

x
x

x

x
xx

x

x
x

x
xx

x

x

x x
x

xx
x

xx
x

x

x

x
x

x
x

x

xx

xx
x

xx
x xx

x
x

x x
xx

x

x

x xx x
xx x

x
xxx
x

x

x
x x

x

x

x

xxxx
xx

x

x

xx
x

x

x

xx

x
xx

x
xx

x

x
xx xxx

xx
x x

x

x

x

x

x

x x
x

x

xx
xx

x

x x

x

x
x

xxx
x

x

x

x x
x

x
x
xx

xx
xx x

x
x

x
xx
x

x

xx xx
x

xx

x

x
x

xx
x

x

x

x
x
x

x
x

x
xx x

x

xxx
x x x

xxx
xx

x x

xxx x

x

x
x

x
x x xx

x x

x

x xx x

x

x
x

x
x

x xx
x xxx

x

x

x
xx

x
x

x

x
x
xx

xx x
xx
xx

xx x
x

x
x

x

x
x

x

x

x
x

xx

x
x

x
xx

x

x

x

x x
x

SVM classification plot

reading

m
at

h

Figure 8.5: Support vector classifier plot for all the training data.

In this figure, the red points correspond to observations that belong to class 1
(below the mean on science), while the black points correspond to observations
that belong to class -1 (at/above the mean on science); the Xs are the support
vectors, while the Os are the non-support vector observations; the upper triangle
(purple) are for class 1, while the lower triangle (blue) is for class -1. While the
decision boundary looks jagged, it’s just an artifact of the way it’s drawn with
this function. We can see that many observations are misclassified (i.e., some
red points are in the lower triangle and some black points are in the upper

132 CHAPTER 8. SUPERVISED MACHINE LEARNING - PART II

triangle). However, there are a lot of observations shown in this figure and it is
difficult to discern the nature of the misclassification.
As was discussed in the section on data visualization, with this many points
on a figure it is difficult to evaluate patterns, not to mention that the figure
is extremely slow to render. Therefore, let’s take a random sample of 1,000
observations to get a better sense of our classifier. This is shown in Figure 8.6.

set.seed(1)
ran_obs <- sample(1:nrow(train_dat), 1000)
plot(svc_fit, data = train_dat[ran_obs,], math ~ reading)

−
1

1

300 400 500 600 700

300

400

500

600

700

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

oo

o

o

o
o

o

o o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o
o

o

o

o

oo o

o

o

o
o

o

o

o

o

o

o
oo

o

o

o
o

o

oo

o

o

o

o

o

o

o

o
o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o o

o

o

o

oo

o

o

oo

o

o
o

o

o

oo

o

o

o

o

o

o

o

o

o

o o

o
o

oo

o

o

o

o

o

o

o

oo o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o o

ooo

oo

o

o

o

o

o o

o
o

o

oo
o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o
oo

o

oo
o

o

o

o

o

o

o o

o
o

o
o

o

o
o

o

o

oo
o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o o

o

o

o

o

o

o

o

o

oo

o
o o

o

o

o

o

o o

o
o

o

o

o

o

o

o o

o

o

o

o

o o

o

o
o

o

o

o

o

o
o

o
o o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o
o

o

o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o
o

o
o

o

o

o

o

o

o o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o
o

oo

o

o
o

o
o o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o o

o

oo

o o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

x
x

x

x

x x

x

x

x

x

x

x
x

x
x

x
x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx
x

x

x

x

x
x x

x
x

x

x
x

x

x x
x

x

x

x

x

xx

x

x

x

x

x

x

x

x

xx

x

x

x
x

x

x
xx

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x
x

x
x

x

xx
x

x

x

x
x

x

x

x

x

x

x

x

x

x

xx

x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x
x

x

x

xx
x

x

x

x

xx x

x

x
x

x

x

x
x

x

x

x

SVM classification plot

reading

m
at

h

Figure 8.6: Support vector classifier plot for all a random subsample (n = 1000)
of training observations.

Notice that few points are crossing the hyperplane (i.e., are misclassified). This
looks like the classier is doing pretty good.
Initially when we fit the support vector classifier we used the default cost pa-
rameter, but we really should select this parameter through tuning via cross-
validation as we might be able to do an even better job at classifying. The
e1071 package includes a tune function which makes this easy and automatic.
It performs the tuning via 10-folds cross-validation by default, which is proba-
bly a fine tradeoff (see James, et al. 2013 for a comparison of k-folds vs. leave

8.1. SUPPORT VECTOR MACHINES 133

one out cross-validation). We need to provide the tune function with a range
of cost values (which again corresponds to our tolerance to violate the margin
and hyperplane).

tune_svc <- tune(svm, sci_class ~., data = train_dat,
kernel="linear",
ranges = list(cost = c(.01, .1, 1, 5, 10)))

On my Macbook Pro (2.6 GHz Intel Core i7 and 16 GB RAM) it takes approx-
imately 2 minutes run this. Without doing this subsetting, it will take quite a
bit longer to do.

We can view the cross-validation errors by using the summary function on this
object.

summary(tune_svc)

##
Parameter tuning of 'svm':
##
- sampling method: 10-fold cross validation
##
- best parameters:
cost
0.01
##
- best performance: 0.06981
##
- Detailed performance results:
cost error dispersion
1 0.01 0.06981 0.005455
2 0.10 0.07063 0.005702
3 1.00 0.07031 0.005773
4 5.00 0.07051 0.005838
5 10.00 0.07063 0.005962

And then select the best model and view it.

best_svc <- tune_svc$best.model
summary(best_svc)

##
Call:
best.tune(method = svm, train.x = sci_class ~ ., data = train_dat,

134 CHAPTER 8. SUPERVISED MACHINE LEARNING - PART II

ranges = list(cost = c(0.01, 0.1, 1, 5, 10)), kernel = "linear")
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 0.01
##
Number of Support Vectors: 3355
##
(1676 1679)
##
##
Number of Classes: 2
##
Levels:
-1 1

Next, we write a function to evaluate our classifier that has one argument that
takes a confusion matrix.

#' Evaluate classifier
#'
#' Evaluates a classifier (e.g. SVM, logistic regression)
#' @param tab a confusion matrix
eval_classifier <- function(tab, print = F){

n <- sum(tab)
TP <- tab[2,2]
FN <- tab[2,1]
FP <- tab[1,2]
TN <- tab[1,1]
classify.rate <- (TP + TN) / n
TP.rate <- TP / (TP + FN)
TN.rate <- TN / (TN + FP)
object <- data.frame(accuracy = classify.rate,

sensitivity = TP.rate,
specificity = TN.rate)

object
}

The confusion matrix is just a list of all possible outcomes (true positives,
true negatives, false positives, and false negatives). A confusion matrix for
our best_svc can be created by:

8.1. SUPPORT VECTOR MACHINES 135

to create a confusion matrix this order is important!
observed values first and predict values second!
svc_cm_train <- table(train_dat$sci_class,

predict(best_svc))
svc_cm_train

##
-1 1
-1 5586 588
1 510 9088

The top-left are the true negatives, the bottom-left are the false negatives, the
top-right are the false positives, and the bottom-right are the true positives. We
can request the accuracy (the % of observations that were correctly classified),
the sensitivity (the % of observations that were in class 1 that were correctly
identified), and specificity (the % of observations that were in class -1 that were
correctly identified) using the eval_classifier function.

eval_classifier(svc_cm_train)

accuracy sensitivity specificity
1 0.9304 0.9469 0.9048

Performance is pretty good overall. We see that class -1 (specificity) isn’t clas-
sified as well as class 1 (sensitivity). These statistics are likely overly optimistic
as we are evaluating our model using the training data (the same data that we
used to build our model). How well does the model perform on the testing data?

svc_cm_test <- table(test_dat$sci_class,
predict(best_svc, newdata = test_dat))

svc_cm_test

##
-1 1
-1 2749 307
1 311 4519

eval_classifier(svc_cm_test)

accuracy sensitivity specificity
1 0.9216 0.9356 0.8995

136 CHAPTER 8. SUPERVISED MACHINE LEARNING - PART II

Still impressively high! This is a very good classifier indeed. This is likely
because math and reading are so highly correlated with science scores.

We can extract the coefficients from our model that make up our decision bound-
ary.

beta0 <- best_svc$rho
beta <- drop(t(best_svc$coefs) %*% as.matrix(train_dat[best_svc$index, -1]))
beta0

[1] 0.9188

beta

WEALTH HEDRES ENVAWARE ICTRES EPIST HOMEPOS ESCS
-0.03214 0.15448 -0.26000 0.08124 -0.03679 -0.17891 0.07808
reading math
-146.13121 -140.79645

With more complicated SVMs with non-linear kernels, coefficients don’t make
any sense and generally are of little interest with applying these models.

8.1.2.2 Comparison to logistic regression

Support vector classifiers are quite similar to logistic regression. This has to
do with them having similar loss functions (the functions used to estimate the
parameters). In situations where the classes are well separated, SVM (more
generally), tend to do better than logistic regression and when they are not well
separated, logistic regression tends to do better (James, et al., 2013).

Let’s compare logistic regression to the support vector classier. We’ll begin by
fitting the model

lr_fit <- glm(sci_class ~. , data = train_dat, family = "binomial")

and then viewing the coefficients.

coef(lr_fit)

(Intercept) WEALTH HEDRES ENVAWARE ICTRES EPIST
-42.89636 0.07147 -0.28019 0.28343 -0.16459 0.04878
HOMEPOS ESCS reading math
0.37130 -0.27067 0.04146 0.04631

8.1. SUPPORT VECTOR MACHINES 137

How does it do relative to our best support vector classifier on the training and
the testing data sets? For the training data set

lr_cm_train <- table(train_dat$sci_class,
round(predict(lr_fit, type = "response")))

lr_cm_train

##
0 1
-1 5592 582
1 517 9081

eval_classifier(lr_cm_train)

accuracy sensitivity specificity
1 0.9303 0.9461 0.9057

and then for the testing data set.

lr_cm_test <- table(test_dat$sci_class,
round(predict(lr_fit, newdata = test_dat, type = "response")))

lr_cm_test

##
0 1
-1 2761 295
1 312 4518

eval_classifier(lr_cm_test)

accuracy sensitivity specificity
1 0.923 0.9354 0.9035

Equivalent out to the hundredths place. Either model would be fine here.

8.1.2.3 Using Apache Spark for machine learning

Apache Spark is also capable of running support vector classifiers. It does this
using the ml_linear_svc function. The amazing thing about this is that you
can use it to run the entire data set (i.e., there is no need to subset out a
portion of the countries). If we tried to do this with the e1071 package it would

138 CHAPTER 8. SUPERVISED MACHINE LEARNING - PART II

be very impractical and take forever, but with Apache Spark it is feasible and
reasonably quick (just a few minutes).

We’ll again use the sparklyr package to interface with Spark and use the dplyr
package to simplify interacting with Spark.

library(sparklyr)
library(dplyr)

We first need to establish a connection with Spark and then copy a subsetted
PISA data set to Spark.

sc <- spark_connect(master = "local")
spark_sub <- subset(pisa,

select = c(sci_class, WEALTH, HEDRES, ENVAWARE, ICTRES,
EPIST, HOMEPOS, ESCS, reading, math))

spark_sub <- na.omit(spark_sub) # can't handle missing data
pisa_tbl <- copy_to(sc, spark_sub, overwrite = TRUE)

Now, we’ll let Spark partition the data into a training and a test data set.

partition <- pisa_tbl %>%
sdf_partition(training = 2/3, test = 1/3, seed = 442019)

pisa_training <- partition$training
pisa_test <- partition$test

We are ready to run the classifier in Spark. Unlike the svm function, the tol-
erance parameter is called reg_param. This parameter should be optimally
selected like it was for svm. By default the tolerance is 1e-06.

svc_spark <- pisa_training %>%
ml_linear_svc(sci_class ~ .)

We then use the ml_predict function to predict the classes.

svc_pred <- ml_predict(svc_spark, pisa_training) %>%
select(sci_class, predicted_label) %>%
collect()

Then print the confusion matrix and the criteria that we’ve been using to eval-
uate our models.

8.1. SUPPORT VECTOR MACHINES 139

table(svc_pred)

predicted_label
sci_class -1 1
-1 145111 12353
1 10753 121967

eval_classifier(table(svc_pred))

accuracy sensitivity specificity
1 0.9204 0.919 0.9216

Again, this is really good. How does it look on the testing data?

svc_pred_test <- ml_predict(svc_spark, pisa_test) %>%
select(sci_class, predicted_label) %>%
collect()

table(svc_pred_test)

predicted_label
sci_class -1 1
-1 72577 6199
1 5438 60953

eval_classifier(table(svc_pred_test))

accuracy sensitivity specificity
1 0.9198 0.9181 0.9213

Pretty impressive. We can also Apache Spark to fit logistic regression using the
ml_logistic_regression function.

spark_lr <- pisa_training %>%
ml_logistic_regression(sci_class ~ .)

And view the performance on the training and test data sets.

Training data
svc_pred_lr <- ml_predict(spark_lr, pisa_training) %>%
select(sci_class, predicted_label) %>%
collect()

table(svc_pred_lr)

140 CHAPTER 8. SUPERVISED MACHINE LEARNING - PART II

predicted_label
sci_class -1 1
-1 146217 11247
1 11133 121587

eval_classifier(table(svc_pred_lr))

accuracy sensitivity specificity
1 0.9229 0.9161 0.9286

Test data
svc_pred_test_lr <- ml_predict(spark_lr, pisa_test) %>%
select(sci_class, predicted_label) %>%
collect()

table(svc_pred_test_lr)

predicted_label
sci_class -1 1
-1 73098 5678
1 5646 60745

eval_classifier(table(svc_pred_test_lr))

accuracy sensitivity specificity
1 0.922 0.915 0.9279

We could also use the logistic regression in R as it’s pretty quick even with this
large of a data set (in fact, it’s slightly quicker).
Finally, it is quite common to evaluate these models using AUC. We can let
Apache Spark do this for the test data sets.

extract predictions
pred_svc <- ml_predict(svc_spark, pisa_test)
pred_lr <- ml_predict(spark_lr, pisa_test)

ml_binary_classification_evaluator(pred_svc)

[1] 0.9795

ml_binary_classification_evaluator(pred_lr)

[1] 0.9805

We want these values as close to 1 as a possible. These values are all quite large
and corroborate that these are both good classifiers.

8.1. SUPPORT VECTOR MACHINES 141

8.1.3 Support Vector Machine

SVM is an extension of support vector classifiers using kernels that allow for
a non-linear boundary between the classes. Without getting into the weeds,
to solve a support vector classifier problem all you need to know is the inner
products of the observations. Assuming that 𝑥𝑖 and 𝑥′

𝑖 are two observations and
𝑝 is the number of predictors (features), their inner product is defined as:

⟨𝑥𝑖, 𝑥′
𝑖⟩ = [𝑥𝑖1𝑥𝑖2 … 𝑥𝑖𝑝]

⎡
⎢⎢
⎣

𝑥′
𝑖1

𝑥′
𝑖2
⋮

𝑥′
𝑖𝑝

⎤
⎥⎥
⎦

= 𝑥𝑖1𝑥′
𝑖1 + 𝑥𝑖2𝑥′

𝑖2 + … 𝑥𝑖𝑝𝑥′
𝑖𝑝

More succinctly, ⟨𝑥𝑖, 𝑥′
𝑖⟩ = ∑𝑝

𝑖=1 𝑥𝑖𝑗𝑥′
𝑖𝑗. We can replace the inner product with

a more general form, 𝐾(𝑥𝑖, 𝑥′
𝑖), where 𝐾 is a kernel (a function that quantifies

the similarity of two observations). When,

𝐾(𝑥𝑖, 𝑥′
𝑖) =

𝑝
∑
𝑖=1

𝑥𝑖𝑗𝑥𝑖𝑗

We have the linear kernel and this is the support vector classifier. However, we
can use a more flexible kernel. Such as:

𝐾(𝑥𝑖, 𝑥′
𝑖) = (1 +

𝑝
∑
𝑖=1

𝑥𝑖𝑗𝑥𝑖𝑗)𝑑

which is known as a polynomial kernel of degree 𝑑 and when 𝑑 > 1 we have
much more flexible decision boundary than we do for support vector classifiers
(when 𝑑 = 1 we are back to the support vector classifier).
Another very common kernel is the radial kernel, which is given by:

𝐾(𝑥𝑖, 𝑥′
𝑖) = exp(−𝛾

𝑝
∑
𝑖=1

(𝑥𝑖𝑗 − 𝑥𝑖𝑗)2)

where 𝛾 is a positive constant. Note, both 𝑑 and 𝛾 are selected via tuning and
cross-validation.
Both of these kernels are worth considering when the decision boundary is non-
linear. Figure 8.7 from James, et al. (2013) gives an example of a non-linear
boundary. We see that the classes are not linearly separated and if we tried
to use a linear decision boundary, we would end up with a very poor classifier.
Therefore, we need to use a more flexible kernel. In both cases, we should
expect that an SVM would greatly outperform both a support vector classifier
and logistic regression.

142 CHAPTER 8. SUPERVISED MACHINE LEARNING - PART II

Figure 8.7: Non-linear decision boundary with a polynomial kernel (left) and
radial kernel (right) from James et al., 2013.

8.1.3.1 Examples

We will continue trying to build the best classifier of whether someone scored
in the upper or lower half on the science scale and again use the svm function in
the e1071 package. For brevity, we’ll consider only the radial kernel. By default
gamma is set to 1. We’ll explicitly set it to 1 below and cost to 1.

svm_fit <- svm(sci_class ~., data = train_dat,
cost = 1,
gamma = 1,
kernel = "radial")

Again, we can request some basic information about our model.

summary(svm_fit)

##
Call:
svm(formula = sci_class ~ ., data = train_dat, cost = 1, gamma = 1,
kernel = "radial")
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 1

8.1. SUPPORT VECTOR MACHINES 143

##
Number of Support Vectors: 6968
##
(3314 3654)
##
##
Number of Classes: 2
##
Levels:
-1 1

This time we see we have 6988 support vectors, 3676 in class -1 and 3312 in
class 1. Quite a bit more support vectors than the support vector classifier. Lets
visually inspect this model by plotting it against the math and reading features
on the same subset of test takers (Figure 8.8.

plot(svm_fit, data = train_dat[ran_obs,], math ~ reading)

−
1

1

300 400 500 600 700

300

400

500

600

700

o

o
oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o o

o

oo

o o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

oo o

o o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o
o

o

o

oo

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o
o

o

o

o

o
o

o

o
o

o

o

o

o

o
o

o

o

o
o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o
o

oo

o

oo o
o

oo

o

o

o

o

oo

o

o

o
oo

o

o
o o

oo

oo

o

o

o

o
o

oo
o

o

o

o
o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

ooo

o

o o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o oo

o

oo

o

o

o

o

o

o o

o
o

o

o

o

oo
o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o
o o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o
o

o
o o

o

o

o

o

o

o

o

o
o oo

o

oo

o

o

o
o

o

o

o

o

o
o

o

o

oo

o

o

o

o

o

oo

o

o

o

o

o o

o

oo

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

x

xx x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x
xx

x

x
x

x
xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x
x

x
x

x

x

x

x

x
x

x

x

xx

xx

x

x

x

x

x

x

x

x

x

x

x

x

xx

xx

x

x

x

x

x

x

x
x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx
x

x
x x

x

x

x

x

x

x
x

x

x
x

xx

x

x xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
xx

x

x
x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x x

xx

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x x

x

x

x

x

x

x x
x

x

x

x

x

x

x

xx

x

x

x

x
x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x x

x

x

x

x

x

x

x

x

xx

x

x

xx

x

x

x

x

x

x

x
x

x

x

x
x

x

x
x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x
x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x
x

x

x

x

x
x

x

x

x x
x

x

x
x

x

x
x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x
x

x x

x

x

x
x

x

x

x

x
x x

x

x

x
x

x

x
x

x

x
x

x

x
x

x

xx

x

x

x
x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

SVM classification plot

reading

m
at

h

Figure 8.8: Support vector classifier plot for all a random subsample (n = 1000)
of training observations.

We see that the decision boundary is now clearly no longer linear and we again

144 CHAPTER 8. SUPERVISED MACHINE LEARNING - PART II

see decent classification. Before we investigate the fit of the model, we should
tune it.

tune_svm <- tune(svm, sci_class ~., data = train_dat,
kernel = "radial",
ranges = list(cost = c(.01, .1, 1, 5, 10),

gamma = c(0.5, 1, 2, 3, 4)))

We can see which model was selected

summary(tune_svm)

##
Parameter tuning of 'svm':
##
- sampling method: 10-fold cross validation
##
- best parameters:
cost gamma
0.1 0.5
##
- best performance: 0.07304
##
- Detailed performance results:
cost gamma error dispersion
1 0.01 0.5 0.17347 0.011914
2 0.10 0.5 0.07304 0.007027
3 1.00 0.5 0.07761 0.005807
4 5.00 0.5 0.08483 0.006374
5 10.00 0.5 0.08927 0.006163
6 0.01 1.0 0.36660 0.014492
7 0.10 1.0 0.12998 0.009448
8 1.00 1.0 0.07938 0.006402
9 5.00 1.0 0.09251 0.005293
10 10.00 1.0 0.09732 0.006792
11 0.01 2.0 0.39145 0.012924
12 0.10 2.0 0.31543 0.014174
13 1.00 2.0 0.11083 0.008397
14 5.00 2.0 0.12034 0.006848
15 10.00 2.0 0.12091 0.006999
16 0.01 3.0 0.39145 0.012924
17 0.10 3.0 0.38486 0.014258
18 1.00 3.0 0.17163 0.009575
19 5.00 3.0 0.16726 0.008073
20 10.00 3.0 0.16738 0.008283

8.1. SUPPORT VECTOR MACHINES 145

21 0.01 4.0 0.39145 0.012924
22 0.10 4.0 0.39145 0.012924
23 1.00 4.0 0.23643 0.010757
24 5.00 4.0 0.22236 0.010339
25 10.00 4.0 0.22242 0.010459

And then select the best model and view it.

best_svm <- tune_svm$best.model
summary(best_svm)

##
Call:
best.tune(method = svm, train.x = sci_class ~ ., data = train_dat,
ranges = list(cost = c(0.01, 0.1, 1, 5, 10), gamma = c(0.5, 1,
2, 3, 4)), kernel = "radial")
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 0.1
##
Number of Support Vectors: 6101
##
(3031 3070)
##
##
Number of Classes: 2
##
Levels:
-1 1

Finally, we see how well this predicts on both the training observations

svm_cm_train <- table(train_dat$sci_class,
predict(best_svm))

svm_cm_train

##
-1 1
-1 5645 529
1 497 9101

146 CHAPTER 8. SUPERVISED MACHINE LEARNING - PART II

eval_classifier(svm_cm_train)

accuracy sensitivity specificity
1 0.9349 0.9482 0.9143

and finally the testing observations.

svm_cm_test <- table(test_dat$sci_class,
predict(best_svm, newdata = test_dat))

svm_cm_test

##
-1 1
-1 2766 290
1 333 4497

eval_classifier(svm_cm_test)

accuracy sensitivity specificity
1 0.921 0.9311 0.9051

Performance is very comparable to the support vector classifier and logistic
regression implying there isn’t much gain from the use of non-linear decision
boundary.

8.1.4 Lab

For the lab, we’ll try to build the best classifier for the “Do you expect your
child will go into a ?” item. Using the following variables (and any variables
that you think might be relevant in the codebook) and data for just Mexico,
try and build the best classifier. Do the following steps:

1. Split the data into a training and a testing data set. Rather than using a
66/33 split, try a 50/50 or a 75/25 split.

2. Fit a decision tree or random forest

• Prune your model and plot your model (if using decision trees)
• Determine the ideal number of trees (if using random forests)

3. Fit a support vector machine

8.1. SUPPORT VECTOR MACHINES 147

• Consider different kernels (e.g., linear and radial)
• Visually inspect your model by plotting it against a few features. Create

a few different plots.
• Tune the parameters.

– How many support vectors do you have?
– Did you notice much difference in the error rates?
– Does your model have a high tolerance?

• (OPTIONAL): When fitting the support vector classifier, you could try
and fit it using Apache Spark

– If you do this, use the ml_binary_classification_evaluator func-
tion to calculate AUC.

4. Run a logistic regression

• Examine the coefficients table

5. Evaluate the fit of your models using the eval_classifier function on
the testing data.

• Which model(s) fits the best? Can you improve it?

6. Record your accuracy, sensitivity, and specificity for all the models (deci-
sion tree or random forest and SVM) to share.

The following table contains the list of variables you could consider (this were
introduced earlier):

Label Description
DISCLISCI Disciplinary climate in science classes (WLE)
TEACHSUP Teacher support in a science classes of students choice (WLE)
IBTEACH Inquiry-based science teaching an learning practices (WLE)
TDTEACH Teacher-directed science instruction (WLE)
ENVAWARE Environmental Awareness (WLE)
JOYSCIE Enjoyment of science (WLE)
INTBRSCI Interest in broad science topics (WLE)
INSTSCIE Instrumental motivation (WLE)
SCIEEFF Science self-efficacy (WLE)
EPIST Epistemological beliefs (WLE)
SCIEACT Index science activities (WLE)
BSMJ Student’s expected occupational status (SEI)
MISCED Mother’s Education (ISCED)
FISCED Father’s Education (ISCED)

148 CHAPTER 8. SUPERVISED MACHINE LEARNING - PART II

Label Description
OUTHOURS Out-of-School Study Time per week (Sum)
SMINS Learning time (minutes per week) -
TMINS Learning time (minutes per week) - in total
BELONG Subjective well-being: Sense of Belonging to School (WLE)
ANXTEST Personality: Test Anxiety (WLE)
MOTIVAT Student Attitudes, Preferences and Self-related beliefs: Achieving motivation (WLE)
COOPERATE Collaboration and teamwork dispositions: Enjoy cooperation (WLE)
PERFEED Perceived Feedback (WLE)
unfairteacher Teacher Fairness (Sum)
HEDRES Home educational resources (WLE)
HOMEPOS Home possessions (WLE)
ICTRES ICT Resources (WLE)
WEALTH Family wealth (WLE)
ESCS Index of economic, social and cultural status (WLE)
math Students’ math scores
reading Students’ reading scores

Chapter 9

Unsupervised machine
learning

9.1 Clustering

Clustering is a broad set of techniques for finding subgroups of observations
within a data set. When we cluster observations, we want observations in the
same group to be similar and observations in different groups to be dissimilar.
Because there isn’t a response variable, this is an unsupervised method, which
implies that it seeks to find relationships between the observations without
being trained by a response variable. Clustering allows us to identify which
observations are alike, and potentially categorize them therein.

9.2 Distance Measures

The classification of observations into groups requires some methods for com-
puting the distance or the (dis)similarity between each pair of observations. The
result of this computation is known as a dissimilarity or distance matrix. There
are many methods to calculate this distance information; the choice of distance
measures is a critical step in clustering. It defines how the similarity of two
elements (x, y) is calculated and it will influence the shape of the clusters.

The choice of distance measures is a critical step in clustering. It defines how
the similarity of two elements (x, y) is calculated and it will influence the shape
of the clusters. The classical methods for distance measures are Euclidean and
Manhattan distances, which are defined as follow:

Euclidean distance:

149

150 CHAPTER 9. UNSUPERVISED MACHINE LEARNING

𝑑𝑒𝑢𝑐(𝑥, 𝑦) = √∑𝑛
𝑖=1(𝑥𝑖 − 𝑦𝑖)2

Manhattan distance:

𝑑𝑚𝑎𝑛(𝑥, 𝑦) = ∑𝑛
𝑖=1 |(𝑥𝑖 − 𝑦𝑖)|

where 𝑥 and 𝑦 are two vectors of length 𝑛.
The choice of distance measures is very important, as it has a strong influence
on the clustering results. For most common clustering software, the default
distance measure is the Euclidean distance. However, depending on the type
of the data and the research questions, other dissimilarity measures might be
preferred and you should be aware of the options.

9.3 K-means clustering

K-means clustering is the most commonly used unsupervised machine learning
algorithm for partitioning a given data set into a set of k groups (i.e., 𝑘 clusters),
where 𝑘 represents the number of groups pre-specified by the researcher. It
classifies objects in multiple groups (i.e., clusters), such that objects within the
same cluster are as similar as possible (i.e., high intra-class similarity), whereas
objects from different clusters are as dissimilar as possible (i.e., low inter-class
similarity). In K-means clustering, each cluster is represented by its center (i.e,
centroid) which corresponds to the mean of points assigned to the cluster.

There are several k-means algorithms available. The standard algorithm is the
Hartigan-Wong algorithm (1979), which defines the total within-cluster varia-
tion as the sum of squared distances Euclidean distances between items and the
corresponding centroid:

𝑊(𝐶𝑘) = ∑𝑥𝑖∈𝐶𝑘
(𝑥𝑖 − 𝜇𝑘)2

where:

𝑋𝑖 is a data point belonging to the cluster 𝐶𝑘 𝜇𝑘 is the mean value of the points
assigned to the cluster 𝐶𝑘

Each observation is assigned to a given cluster such that the sum of squares
(SS) distance of the observation to their assigned cluster centers is minimized.

We can define the total within-cluster variation as follows:

𝑆𝑆𝑡𝑜𝑡𝑎𝑙.𝑤𝑖𝑡ℎ𝑖𝑛 = ∑𝑘
𝑘=1 𝑊(𝐶𝑘) = ∑𝑘

𝑘=1 ∑𝑥𝑖∈𝐶𝑘
(𝑥𝑖 − 𝜇𝑘)2

The total within-cluster sum of square measures the compactness (i.e., goodness)
of the clustering and we want it to be as small as possible.

Generally, K-means algorithm can be used as follows:

1. Specify the number of clusters (𝐾) to be created.

9.4. K-MEANS CLUSTERING IN R 151

2. Select randomly 𝑘 objects from the data set as the initial cluster centers
or means

3. Assign each observation to their closest centroid, based on the Euclidean
distance between the object and the centroid

4. For each of the 𝑘 clusters, update the cluster centroid by calculating the
new mean values of all the data points in the cluster. The centroid of a
𝐾𝑡ℎ cluster is a vector of length 𝑝 containing the means of all variables
for the observations in the 𝑘𝑡ℎ cluster; 𝑝 is the number of variables.

5. Iteratively minimize the total within sum of square (see Eq. 4) by iterating
steps 3 and 4 until the cluster assignments stop changing or the maximum
number of iterations is reached.

9.4 K-means clustering in R

To be completed later…

Check out the following website for some examples in R: https://uc-r.github.
io/kmeans_clustering

https://uc-r.github.io/kmeans_clustering
https://uc-r.github.io/kmeans_clustering

152 CHAPTER 9. UNSUPERVISED MACHINE LEARNING

Chapter 10

Summary

10.1 Topics covered

10.1.1 Exploratory data analysis

1. Data Wrangling

• Subsetting, creating variables, reshaping, and summarizing
• data.table
• dplyr
• sparklyr and Apache Spark

2. Data Visualization

• Static visualizations
• ggplot2
• ggplot2 add-ons GGally, ggExtra, and ggalluvial
• cowplot as an additional ggplot2 theme
• Interactive visualizations
• plotly

10.1.2 Supervised learning

3. Decision trees

• Classification and regression trees
• rpart
• rpart.plot

4. Random forests

• Random forests for classification and regression

153

154 CHAPTER 10. SUMMARY

• randomForest

5. Model building and evaluation

• modelr
• caret

6. Support Vector Machines

• Maximal margin classifers
• Support vector classifiers
• Support vector machines with polynomial and radial kernels
• Logistic regression
• Tuning and evaluating the models
• e1071
• sparklyr

10.2 Methods we didn’t cover

1. Regression

• Penalized regression
– ridge, lasso, elastic net
– glmnet

• Principal components and partial least squares (a supervised version
of PC) regression

– pls
• Non-linear regression

– Polynomials, splines (smoothing splines), generalized additive
models

– splines
– gam

2. K-nearest-neighbors (KNN)

• caret
• class

3. Unsupervised learning

• K-means clustering
• Hierarchical clustering
• cluster
• factoextra

	Preface
	Summary
	Who we are

	Introduction
	What is big data?
	Why is big data important?
	How do we analyze big data?
	Additional resources
	PISA dataset

	Exploratory data analysis
	What is exploratory data analysis?
	Confirmatory data analysis
	A framework for EDA
	EDA tools

	Wrangling big data
	What is data.table?
	Reading/writing data with data.table
	Using the i in data.table
	Using the j in data.table
	Summarizing using the by in data.table
	Reshaping data
	The sparklyr package
	Lab

	Visualizing big data
	Introduction to ggplot2
	Marginal plots
	Conditional plots
	Plots for examining correlations
	Plots for examining means by group
	Plots for ordinal/categorical variables
	Interactive plots with plotly
	Customizing visualizations
	Lab

	Modeling big data
	Introduction to machine learning
	Types of machine learning

	Supervised Machine Learning - Part I
	Decision Trees
	Decision trees in R
	Random Forests
	Random forests in R

	Supervised Machine Learning - Part II
	Support Vector Machines

	Unsupervised machine learning
	Clustering
	Distance Measures
	K-means clustering
	K-means clustering in R

	Summary
	Topics covered
	Methods we didn't cover

