Statistical Analysis and Visualizations Using R

Okan Bulut

University of Alberta

1

Contents

Overview
Course Description o
Course Objectives
Instructor Information
Course Structure
Course Materials
Learning Process

Additional Resources

Introduction
R and RStudio
Basics of the R Language

Data Wrangling
Creating Datasetsin R
Importing Datainto R
Understanding the Data
Indexing oL
Subsetting
Other Data Manipulation Tools

Descriptive Statistics
Quick Summary L
Frequency Tables

Central Tendency and Dispersion,

il

N N N L

(934

iv

Data Visualizations in R
Base R Graphics
ggplot2 Graphics

Hypothesis Testing
Some Theory
Types of Inferential Statistics
One-Sample t Test
Independent-Samples t Test
t-test with Paired Data
Analysis of Variance (ANOVA)

Exercise 9

Additional Packages to Consider

Correlation and Regression
Correlation
Simple Linear Regression
Multiple Regression
Exercise 10

Additional Packages to Consider

Additional R Features
Removing Objects from the Workspace
Saving Output in R
Unloading a Package
Updating R and R Packages

References

CONTENTS

Overview

Figure 1: Source: https://unsplash.com/photos/DErxVSSQNdM

Course Description

Welcome to Statistical Analysis and Visualizations Using R at the Technology Training
Centre. R (R Core Team 2021) is a free and open-source programming language that allows
users to access a wide range of statistical and graphical tools. Over the last decade, R
has become one of the most widely used statistical software programs among researchers
and practitioners around the world due to its growing capabilities through user-created, free
packages.

This full-day course is intended to provide participants with a hands-on training in explor-
ing, visualizing, and analyzing data using the R programming language. To control R,
participants will use RStudio, which is a free, user-friendly program with a console, syntax-
highlighting editor that supports direct code execution, and a variety of robust tools for
plotting.

https://ttc-events.azurewebsites.net/#!/courseInfo/3522459e3a0746daa29e49f77c27f041
https://www.ualberta.ca/technology-training/
https://www.ualberta.ca/technology-training/
https://www.r-project.org/
https://www.rstudio.com/

2 OVERVIEW

Course Objectives

Upon successfully completing this course, participants will be able to:

understand the basics of the R programming language
» perform steps to manage different types of data

» execute data preparation steps

 visualize data with various types of variables

« compute descriptive statistics

o compute inferential statistics using R

Instructor Information

Okan Bulut — University of Alberta

o Associate Professor of educational measurement and psychometrics at the University
of Alberta

e 10+ years using R for statistical data analysis and visualization

» Specialized in the analysis and visualization of big data (mostly from large-scale as-
sessments)

o 8+ years teaching courses and workshops on statistics, psychometrics, and program-
ming with R

« Website: https://sites.ualberta.ca/~bulut/

e E-mail: bulut@Qualberta.ca

I also co-authored:

o Three R packages:

— profileR for profile analysis of multivariate data
— hemp for psychometric analysis of assessment data
— eirm for explanatory item response modeling

o A recent book called Handbook of Educational Measurement and Psychometrics Using
R

Course Structure

This course will introduce participants to statistical and data science procedures widely used
in social sciences, public health, and other similar areas. Four aspects of statistical reasoning
will be emphasized:

https://sites.ualberta.ca/~bulut/
mailto:bulut@ualberta.ca
https://github.com/cddesja/profileR
https://github.com/cddesja/hemp
https://github.com/okanbulut/eirm
https://www.crcpress.com/Handbook-of-Educational-Measurement-and-Psychometrics-Using-R/Desjardins-Bulut/p/book/9781498770132
https://www.crcpress.com/Handbook-of-Educational-Measurement-and-Psychometrics-Using-R/Desjardins-Bulut/p/book/9781498770132

COURSE MATERIALS

data wrangling
data visualization

Ll

univariate statistical methods
computer applications using R

During the course, we will use the following schedule:

Part Description

1 Introduction (9:00-9:30)
Overview of R and RStudio
Basics of R language

2 Data Wrangling (9:30-10:30)
Creating/importing and managing data
Data manipulation

3 Descriptive Statistics (10:30-12:00)

Break (12:00-13:00)
4

Frequency distributions, Graphical tools
Central tendency and dispersion

Hypothesis Testing (13:00-14:30)
Overview of hypothesis testing, t-tests
Analysis of variance (ANOVA)

Correlation and Regression (14:30-16:00)
Correlations for different types of variables
Simple and multiple linear regression

Course Materials

Participants will find copies of the course materials in the computers that they will be using.
In addition, participants can access these materials online:

« To view the online course notes: https://okanbulut.github.io/rbook/
o To view and download other course materials (e.g., dataset, cheatsheets): https://
github.com/okanbulut/rbook

Learning Process

Learning how to use R is just like learning a new language to speak. So, it might be a
bit overwhelming at the beginning. Therefore, I strongly recommend you to ask all of your
questions while we go over today’s materials. Collaboration between the training participants

is also highly recommended!

https://okanbulut.github.io/rbook/
https://github.com/okanbulut/rbook
https://github.com/okanbulut/rbook

4 OVERVIEW
Additional Resources

There are many resources (e.g., websites and books) on statistical data analysis using R on
the Internet. A brief list of such resources are shown below:

Websites:

« An Introduction to R: https://cran.r-project.org/doc/manuals/R-intro.pdf

Using R for Introductory Statistics: https://goo.gl/owJbLg

Quick R: http://www.statmethods.net /index.html

R Cookbook: http://www.cookbook-r.com/
Online training:

o Coursera: https://www.coursera.org/learn/r-programming
o DataCamp: https://www.datacamp.com/courses/free-introduction-to-r

¢ And tons of free videos on YouTube!!!
Books:

« R for Data Science: https://rd4ds.had.co.nz/

« Openlntro Statistics: https://openintro-ims.netlify.app/

https://cran.r-project.org/doc/manuals/R-intro.pdf
https://goo.gl/owJbLg
http://www.statmethods.net/index.html
http://www.cookbook-r.com/
https://www.coursera.org/learn/r-programming
https://www.datacamp.com/courses/free-introduction-to-r
https://www.youtube.com/
https://r4ds.had.co.nz/
https://openintro-ims.netlify.app/

Introduction

R and RStudio

What is R?

R ...

is a free, open source program for statistical computing and data visualization.

is cross-platform (e.g., available on Windows, Mac OS, and Linux).

is maintained and regularly updated by the Comprehensive R Archive Network
(CRAN).

is capable of running all types of statistical analyses.

has amazing visualization capabilities (high-quality, customizable figures).

enables reproducible research.

has many other capablities, such as web programming.

supports user-created packages (currently, more than 10,000)

https://cran.r-project.org/

6 INTRODUCTION

What is RStudio?

RStudio ...

« is a free program available to control R.
o provides a more user-friendly interface for R.
e includes a set of tools to help you be more productive with R, such as:

— A syntax-highlighting editor for highlighting your R codes

— Functions for helping you type the R codes (auto-completion)

— A variety of tools for creating and saving various plots (e.g., histograms, scatter-
plot)

— A workspace management tool for importing or exporting data

Download and Install

To benefit from RStudio, both R and RStudio should be installed in your computer. R
and RStudio are freely available from the following websites:

To download and install R:

1. Go to https://cran.r-project.org/

Click “Download R for Mac/Windows”"

3. Download the appropriate file: « Windows users click Base, and download the installer
for the latest R version Mac users select the file R-3.X.X.pkg that aligns with your
OS version

4. Follow the instructions of the installer.

no

To download and install RStudio:

. Go to https://www.rstudio.com/products/rstudio/download/

. Click “Download” under RStudio Desktop - Open Source License
. Select the install file for your OS

. Follow the instructions of the installer.

=W N

Preview of RStudio

After you open RStudio, you should see the following screen:

I personally prefer console on the top-left, source on the top-right, files on the bottom-left,
and environment on the bottom-right. The pane layout can be updated using Global Options
under Tools.

We can also change the appearance (e.g., code highlighting, font type, font size, etc.):

https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/

R AND RSTUDIO

O Rudo - 0 X
Fle Gt Code Ven Pots Seion B4 e Prfie ok

o.y@ al el + Adges + 8 P o +
o Tomiod 0 O =0
C/optonexiog R Wotsop Marh 2 H Csweansme Q /- IR N

R version 3.4.1 (2017-06-30) -- "single candle”
Copyright (<) 2017 The % Foundation for Statistical Cosputing
Platform: x86_64-w64-ming32/x64 (64-bit)

R s free softuare and Coses with ASSOLUTELY O WARRANTY..
You are welcose to redistribute it under certain conditions.
Type "license()" or “Ticence()' for distribution details.

R s a collaborative project with sany contributors.
“contributors()" for sore inforsation and

“citation()" on how to cite & or R packages in publications.

Type “deso()" for some desos, "help()" for on-line help, or

“help.start()' for an KM browser interface to help.

Type "q0)" to quit R.

Console Source

ERCTT RSt :
e pos Poge Hep Viewer =0
O @ vpsste Q Enonment History Connectons -0

Tane Desipton Ve @ | oo { e
by n 1 GobuEonment - a

siod Combio Mutimensions A s

ek ACE 10 08 o elciog Mot ReesionToematins w

adinglts g for Piottng.)

b Diceer s st Ushd Rt s ©

it Consrine Neing Opimizicn s

am Data Anaysis Using Regresion and Mukievel Hienrchical Models 183

- Dot ASH Rutoes 115

st Rl hekFonciens o e Code ety ws

etvesne Alghtneh Corecl e et Pacage w

setieccte HaeinstoCheckPrepetie o Cede

assetivedsts Assestions to Check Propesties of Data

asete dta ik Assetionsto Check Propestes o tings

stiedta HaeinstoChckPrepetie o Sings

assertivedatetimes Assestions to Check Propertiesof Dates and Times 02

setieses HainstoCreck Prepetecl e w2

sete matnces Asertions to Check Propertes of Matrces [

assentivemodels Assestions to Check Properties of Models 01

stienmbes Hatinsto CreckPrpetelVambe w2

setnepropertes Asertons to Check Propertesof Vanables [

e sesinsfrChcng theSatef & e

stieses HaeinstoCheckPrpetiecl Ses w3

setnestrngs Assestons to Check Propertesof Stings 03

assetetypes Assertions to Check Types of Variables 03 i

Figure 2: Opening screen of RStudio

€ Rstudio

File Edit Code View Plots Session Build Debug Profile Tools Help

o . q 2 . » e/function Install Packages...
c o e Check for Package Updates...
0:/Dropbox/Teaching/R Workshop_March 2018/ Version Control 4
R version 3.4.3 (2017-11-30) -- "Kite-Eating Tre Shell...

copyright (C) 2017 The R Foundation for statisti Terminal »
pPlatform: x86_64-w64-mingw32/x64 (64-bit) A R

ins

R is free software and comes with ABSOLUTELY NO
You are welcome to redistribute it under certair Keyboard Shortcuts Help Alt+Shift+K
Type ‘Ticense()' or 'licence()' for distributior Modify Keyboard Shortcuts...

R is a collaborative project with many contribut
Type ‘contributors()’ for more information and
‘citation()' on how to cite R or R packages in f

Project Options...

Type "demo()’ for some demos, 'help()' for on-1ine help, or
"help.start()' for an HTML browser interface to help.
Type 'q()’ to quit R.

>

Figure 3: Click Tools and then select Global Options

Options

General
Code
= Appearance
Pane Layout
Packages
@ RMarkdown
@ sweave
‘7 Spelling
W Givsw

.f.:, Publishing

B eminal

Choose the layout of the panes in RStudio by selecting from the controls in each

quadrant.

Console

Files, Plots, Packages, Help, View ¥

Environment
History
| Files
| Plots
Connections
 Packages
v Help
Build
vCs
| Viewer

% Source %

Environment, History, Connectic ¥

| Environment
7| History
Files
Plots
| Connections
Packages
Help
 Build
vIVCS
Viewer

oK Cancel Apply

INTRODUCTION

Figure 4: Select console, source, environment, or files for each pane

Options

General
Code
—T\' Appearance
Pane Layout
Packages
@ R Markdown
@ sweave

Spelling

W Givswn
'C:,- Publishing

- Terminal

RStudio theme:
Modern

Zoom:
100% ~

Editor font:
Lucida Console

Use ligatures

Editor Font size:
10

Editor theme:
[Ambiance
Chaos
Chrome
Clouds Midnight
Clouds
Crimson Editor
Dawn

Dracula
Dreamweaver
Eclipse

Idle Fingers
Katzenmilch
|Kr Theme

plot <- functi x, vy,
1
(is.function(x) &&

is.null(attr(x,

(missing(y
y <-

hasylab <-
rall(is.na(
pmatch(names (1ist(...)),

)

(hasylab())
plot.function(x, vy,

plot. function(
30 o
ylab = paste(
deparse(substitute(x)),

OK Cancel Apply

Figure 5: Change the Appearance Settings

R AND RSTUDIO 9

Note: To get yourself more familiar with RStudio, I recommend you to check out the
RStudio cheatsheet and Oscar Torres-Reyna’s nice tutorial (Note: You can click on these
links to open and download the documents or see https://github.com/okanbulut/rbook/
tree/master /cheatsheets).

Creating a New Script

In R, we can type our commands in the console; but once we close R, everything we have
typed will be gone. Therefore, we should create an empty script, write the codes in the
script, and save it for future use. We can replicate the exact same analysis and results by
running the script again later on. The R script file has the .R extension, but it is essentially
a text file. Thus, any text editor (e.g., Microsoft Word, Notepad, TextPad) can be used to
open a script file for editing outside of the R environment.

We can create a new script file in R as follows:

€ RStudio
File Edit Ceode View Plots Session Build Debug Profile Tools Help
Mew File 4 R Script Ctrl+Shift+ M
Mew Project...
R Motebook
Open File... Ctrl+0
]] R Markdown...
Reopen with Enceding...
. Shiny Web App...
Recent Files »
_ Text File
Open Project...
o : C++ File
Open Project in Mew Session...
Recent Projects r R Sweave
RHTML
Import Dataset r
R Presentation
Save Ctrl+5 R Decumentation

Figure 6: Creating a new script in R (using RStudio)

When we type some codes in the script, we can select the lines we want to run and then hit
the run button. Alternatively, we can bring the cursor at the beginning of the line and hit
the run button which runs one line at a time and moves to the next line.

Working Directory

An important feature of R is “working directory,” which refers to a location or a folder in
your computer where you keep your R script, your data files, etc. Once we define a working
directory in R, any data file or script within that directory can be easily imported into R

https://github.com/okanbulut/rbook/blob/master/cheatsheets/rstudio-ide.pdf
https://github.com/okanbulut/rbook/blob/master/cheatsheets/rstudio_tutorial.pdf
https://github.com/okanbulut/rbook/tree/master/cheatsheets
https://github.com/okanbulut/rbook/tree/master/cheatsheets

10 INTRODUCTION

&) untitled1* —
<43 A B Bsourceonsave ©® '« H B Run B+ Source ~

Run the current
line or selection
(Ctrl+Enter)

Figure 7: Running R codes from a script file

without specifying where the file is located. By default, R chooses a particular location
in your computer (typically Desktop or Documents) as your working director. To see our
current working director, we need to run a getwd() command in the R console:

getwd ()

This will return a path like this:

[1] "C:/Users/bulut/Desktop"

Once we decide to change the current working direcory into a different location, we can do
it in two ways:

Method 1: Using the “Session” options menu in RStudio

We can select Session > Set Working Directory > Choose Directory to find a folder or
location that we want to set as our current working directory.

Method 2: Using the setwd command in the console

Tpying the following code in the console will set the “R workshop” folder on my desktop as
the working directory. If the folder path is correct, R changes the working directory without
giving any error messages in the console.

R AND RSTUDIO 11

) Rstudio
File Edit Code View Plots Session Build Debug Profile Tools Help
I’ RS New Session

Console Terminal Interrupt R

O:/Dropbox/Teaching/R Workshog Terminate R...

R version 3.4.3 (2017- Restart R Ctrl+Shift+F10
Copyright (C) 2017 The Restart R and Clear Output

Platform: xB86_64-w64-mi
Restart R and Run All Chunks

R is free software and
You are welcome to redi Set Working Directory T Srrres M st
Type 'license()’ or "Ti
ype cense() I Load Workspace... To Files Pane Location

Save Workspace As... Choose Directory... Ctrl+Shift+H

R is a collaborative pr
Type 'contributors()’ fi
‘citation()’ on how to

Clear Workspace...
‘demo()’ for some
.start()’ for an
‘gq()" to quit R.

Cuit Session... Ctrl+Q

Figure 8: Method 1: Setting the working directory in R

setwd("C:/Users/bulut/Desktop/R workshop")

To ensure that the working directory is properly set, we can use the getwd() command
again:

getwd ()
[1] "C:/Users/bulut/Desktop/R workshop"

IMPORTANT: R does not accept any backslashes in the file path. Instead of a backslash,
we need to use a frontslash. This is particulary important for Windows computers since the
file paths involve backslashes (Mac OS X doesn’t have this problem).

Downloading and Installing R Packages

The base R program comes with many built-in functions to compute a variety of statistics
and to create graphics (e.g., histograms, scatterplots, etc.). However, what makes R more
powerful than other software programs is that R users can write their own functions, put
them in a package, and share it with other R users via the CRAN website.

For example, ggplot2 (Wickham et al. 2020) is a well-known R package, created by Hadley
Wickham and Winston Chang. This package allows R users to create elegant data visualiza-
tions. To download and install the ggplot2 package, we need to use the install.packages
command. Note that your computer has to be connected to the internet to be able to connect
to the CRAN website and download the package.

https://cran.r-project.org/web/packages/index.html

12 INTRODUCTION

install.packages("ggplot2")

Once a package is downloaded and installed, it is permanently in your R folder. That is,
there is no need to re-install it, unless you remove the package or install a new version of
R. These downloaded packages are not directly accessible until we activate them in your R
session. Whenever we need to access a package in R, we need to use the library command
to activate it. For example, to access the ggplot2 package, we would use:

library("ggplot2")

To get help on installed packages (e.g., what’s inside this package):

To get details regarding contents of a package
help("ggplot2")

To list vignettes avatlable for a specific package
vignette("ggplot2")

To view specific vignette
vignette("ggplot2-specs")

Exercise 1

1. Open RStudio and set the folder that you have the training materials (it’s called
rtraining) as your working directory using either the setwd command or the Session
options menu in RStudio.

2. Open the R script file called ttc-r-course in the rtraining folder. You can open the
script by either double-clicking on the file (so RStudio opens it automatically) or
using “File” and “Open file” in RStudio.

3. Install and activate the lattice package using the install.packages and library
commands. The lattice package (Sarkar 2020) is another well-known package for
data visualization in R. You should type the following in your script file, choose all
the lines, and hit the run button.

install.packages("lattice")
library("lattice")

BASICS OF THE R LANGUAGE 13

Basics of the R Language

Creating New Variables

To create a new variable in R, we use the assignment operator, <-. To create a variable x
that equals 25, we need to type:

x <- 25

If we want to print x, we just type x in the console and hit enter. R returns the value
assigned to x.

X

[1] 25

We can also create a variable that holds multiple values in it, using the ¢ command (c stands
for combine).

weight <- c(60, 72, 80, 84, 56)
weight

[1] 60 72 80 84 56

height <- ¢(1.7, 1.75, 1.8, 1.9, 1.6)
height

[1] 1.70 1.75 1.80 1.90 1.60

Once we create a variable, we can do further calculations with it. Let’s say we want to
transform the weight variable (in kg) to a new variable called weight2 (in Ibs).

weight2 <- weight * 2.20462
weight?2

[1] 132.3 158.7 176.4 185.2 123.5

Note that we named the variable as weight2. So, both weight and weight2 exist in the
active R session now. If we used the following, this would overwrite the existing weight
variable.

14 INTRODUCTION

weight <- weight * 2.20462

We can also define a new variable based on existing variables.

reading <- c(80, 75, 50, 44, 65)
math <- c(90, 65, 60, 38, 70)
total <- reading + math

total

[1] 170 140 110 82 135

Sometimes we need a variable that holds character strings rather than numerical values. If
a value is not numerical, we need to use double quotation marks. In the example below, we
create a new variable called cities that has four city names in it. Each city name is written
with double quotation marks.

cities <- c("Edmonton", "Calgary", "Red Deer", "Spruce Grove")
cities
[1] "Edmonton" "Calgary" "Red Deer" "Spruce Grove"

We can also treat numerical values as character strings. For example, assume that we have
a gender variable where 1=Male and 2=Female. We want R to know that these values are
not actual numbers; instead, they are just numerical labels for gender groups.

gender <- C(”l”, ||2||, ||2||, ||1||’ ||2||)
gender

[1] lllll l|2ll |12|l H1l| |l2|l

Important Rules for the R Language
Here is a list of important rules for using the R language more effectively:

1. Case-sensitivity: R codes written in lowercase would NOT refer to the same codes
written in uppercase.

cities <- c("Edmonton", "Calgary", "Red Deer", "Spruce Grove")
Cities
CITIES

Error: object 'Cities' not found
Error: object 'CITIES' not found

BASICS OF THE R LANGUAGE 15

2. Variable names: A variable name cannot begin with a number or include a space.

4cities <- c("Edmonton", "Calgary", "Red Deer", "Spruce Grove")
my cities <- c("Edmonton", "Calgary", "Red Deer", "Spruce Grove")

Error: unexpected symbol in "4cities"
Error: unexpected symbol in "my cities"

3. Naming conventions: [recommend using consistent and clear naming conventions
to keep the codes clear and organized. I personally prefer all lowercase with underscore
(e.g., my_variable). The other naming conventions are:

o All lowercase: e.g. mycities

e Period.separated: e.g. my.cities

o Underscore separated: e.g. my_cities

o Numbers at the end: e.g. mycities2018

« Combination of some of these rules: my.cities.2018

4. Commenting: The hashtag symbol (#) is used for commenting in R. Any words,
codes, etc. coming after a hashtag are just ignored. I strongly recommend you to use
comments throughout your codes. These annotations would remind you what you did
in the codes and why you did it that way. You can easily comment out a line without
having to remove it from your codes.

Here I define four cities in Alberta
cities <- c("Edmonton", "Calgary", "Red Deer", "Spruce Grove")

Self-Help

In the spirit of open-source, R is very much a self-guided tool. We can look for solutions to
R-related problems in multiple ways:

1. Use the ? to open help pages for functions or packages (e.g., try ?summary in the
console to see how the summary function works)

2. For tricky questions and funky error messages (there are many of these), use Google
(include “in R” to the end of your query)

3. We can also use RSeek (https://rseek.org/) - a search engine just for R

4. StackOverflow (https://stackoverflow.com/) has become a great resource with many
questions for many specific packages in R, and a rating system for answers

https://www.google.com/
https://rseek.org/
https://stackoverflow.com/

16 INTRODUCTION
Exercise 2

1. Create two new variables age and salary for five persons:

o age: 21, 24, 32, 45, 52
e salary: 4500, 3500, 4100, 4700, 6000

2. Then, type the following code in your script and run it to find the correlation between
age and salary:

cor(age, salary)

Data Wrangling

Nearly all datasets require some initial procedures (e.g., cleaning, reformatting, reshaping) to
be applied before we start running any statistical analysis or creating visualizations. These
procedures are often referred to as data wrangling. Here is a nice summary of the data
wrangling process:

//, Visualise
Import — Tidy — Transform) — Communicate
Wrang|
rangle k-d Model
Understand

., A

Program

Figure 9: Data wrangling process [Source: Grolemund and Wickham (2018)]

In this section, we will follow the steps of data wrangling as shown above.

Creating Datasets in R

There are multiple ways of creating datasets in R. We can create individual variables and
combine them using the cbind (column bind) command:

age <- c(21, 24, 32, 45, 52)

salary <- c(4500, 3500, 4100, 4700, 6000)
mydata <- cbind(age, salary)

mydata

age salary
[1,] 21 4500
[2,] 24 3500

17

https://r4ds.had.co.nz/wrangle-intro.html

18 DATA WRANGLING

[3,] 32 4100
(4,1 45 4700
5,1] 52 6000

We can also create individual rows and combine them using the rbind (row bind) command
(though this is not practical if there are many rows):

personl <- c(21, 4500)
person2 <- c(24, 3500)
person3 <- c(32, 4100)
persond <- c(45, 4700)
personb <- c(52, 6000)

mydata <- rbind(personl, person2, person3, person4, personb)
mydata

(,11 [,2]
personl 21 4500
person2 24 3500
persond 32 4100
persond 45 4700
personb 52 6000

A better way to create datasets in R is to define variables within a data frame using the
data.frame command.

mydata <- data.frame(c(21, 24, 32, 45, 52),

c (4500, 3500, 4100, 4700, 6000))
mydata

age salary

1 21 4500
2 24 3500
3 32 4100
4 45 4700
5 52 6000

Data frames in R are very convenient because many mathematical operations can be directly
applied to a data frame or some columns (or rows) of a data frame. Once a data frame is
defined in R, we can see its content using the View command (which open the data window)
or the head command (which prints the first six rows of the data):

IMPORTING DATA INTO R 19

To print the first siz rows of a data frame
head (mydata)

To see the entire data in the view window
View(mydata)

Importing Data into R

We often save our data sets in convenient data formats, such as Excel, SPSS, or text files
(.txt, .csv, .dat, etc.). R is capable of importing (i.e., reading) various data formats.

There are two ways to import a data set into R:

1. By using the “Import Dataset” menu option in RStudio
2. By using a particular R command

Method 1: Using RStudio

Importing Excel Files

» Browse for the file that you want to import

e Give a name for the data set

e Choose the sheet to be imported

o “First Row as Names” if the variable names are in the first row of the file.

Importing SPSS Files

« Browse the file that you want to import
o Give a name for the data set
» Choose the SPSS data format (SAV)

Method 2: Using R Commands

R has some built-in functions, such as read. csv and read.table. Also, there are R packages
for importing specific data formats. For example, foreign for SPSS files and x1sx for Excel
files. Here are some examples:

Excel Files:

20

) Rstudio

File

Import Options:

dataset

Edit Code VWiew Plots

Mew File

Mew Project..

Open File...
Reopen with Enceding...
Recent Files

Open Project...

Open Project in Mew Session...

Recent Projects
Import Dataset

Save
Save As...
Save with Encoding...

Save All
Compile PDF
Print...

Cloze
Close All

Close All Except Current
Close Project

Chuit Session...

DATA WRANGLING

Session Build Debug Profile Tools He
» 25 - Addins

Ctrl+ O 1op_beamer/ =

-Eating Tree

- statistical Comp
it
OLUTELY MO WARRAMTY
der certain conditi
i stribution details
- From Text (base)...
Ctrl+ S From Text (readr]...
From Excel...
Fram 5P55...
Ctrl+ Alt+5S
From 545...
Ctrl+Shift+ K From Stata...
Ctrl+W
Ctrl+ 5hift+ W
Ctrl+ Alt+Shift+W
Ctrl+C

Figure 10: Importing a dataset using the RStudio menu

Default - Skip:

MA:

7 Reading Excel files using readxl

Max Rows: < First Row as Mames

0 + | Open Data Viewer

Figure 11: Importing Excel files

IMPORTING DATA INTO R 21

Import Opticns:

Mame: | dataset

Model: |

Format: | say - +| Open Data Viewer

7' Reading data using haven

Figure 12: Importing SPSS files

Install and activate the package first
install.packages("x1lsx")
library("xlsx")

Use read.xzlsz to import an Excel file
my_excel file <- read.xlsx("path to the file/filename.xlsx", sheetName = "sheetname")

SPSS Files:

Install and activate the package first
install.packages("foreign'")
library("foreign")

Use read.spss to tmport an SPSS file
my_spss_file <- read.spss("path to the file/filename.sav", to.data.frame = TRUE)

Text Files:

No need to install any packages
R has many built-in functions already

A comma-separated-values file with a .csv extension
my_csv_file <- read.csv("path to the file/filename.csv", header = TRUE)

A tab delimited text file with .tzt extension
my_txt_file <- read.table("path to the file/filename.txt", header = TRUE, sep = "\t")

Here we should note that:

e header = TRUE if the variable names are in the first row; otherwise, use header =
FALSE
o sep="\t" for tab-separated files; sep="," for comma-separated files

22 DATA WRANGLING

Exercise 3

Now we will import the medical dataset into R. The dataset comes from a clinical study.
Patients with no primary care physician were randomized to receive a multidisciplinary
assessment and a brief motivational intervention, with the goal of linking them to primary

medical care. You can find the details in “Codebook for the medical Dataset” in your folder.
Our dataset is in a .csv format (medical.csv).

1. Import the file medical.csv by using the read.csv command and save it as medical
using the following code (assuming that the file is in your working directory):

medical <- read.csv('"medical.csv", TRUE)

2. Once the data file is successfully imported, run the following to see the first six rows
of the data:

head(medical)

You should be able to see the output below:

id age sex race homeless substance avg_drinks max_drinks suicidal treat
1 1 37 male black housed cocaine 13 26 yes yes
2 2 37 male white homeless alcohol 56 62 yes yes
3 3 26 male black housed heroin 0 0 no no
4 4 39 female white housed heroin 5 5 no no
5 5 32 male black homeless cocaine 10 13 no no
6 6 47 female black housed <cocaine 4 4 no yes
physicall mentall depressionl physical2 mental2 depression?2
1 58.41 25.112 49 54.23 52.23 7
2 36.04 26.670 30 59.56 41.73 11
3 74.81 6.763 39 58.46 56.77 14
4 61.93 43.968 15 46.61 14.66 44
5 37.35 21.676 39 31.42 40.67 26
6 46.48 55.509 6 43.20 50.06 23

Understanding the Data

After we import a dataset into R, we can quickly check a few things to understand our
dataset better:

e To see the number of rows in the data:

UNDERSTANDING THE DATA

nrow(medical)

[1] 246

e To see the number of columns in the data:
ncol (medical)
[1] 16

o To see its dimensions all together:
dim(medical)
[1] 246 16

o To see all of the variable names in the data:

names (medical)

[1] Ilidﬂ Ilagell Ilsexll Ilracell
[6] "substance" "avg_drinks" "max_drinks" "suicidal"
[11] "physicall" "mentall" "depressionl" "physical2"

[16] "depression2"

e To see the structure of the entire dataset:

str(medical)

'data.frame': 246 obs. of 16 variables:

$ id :int 12345689 10 12 ...

$ age : int 37 37 26 39 32 47 28 50 39 58 ...

$ sex : chr "male" "male" "male" "female"

$ race : chr "black" "white" "black" "white"

$ homeless : chr "housed" "homeless" "housed" "housed"
$ substance : chr "cocaine" "alcohol" "heroin" "heroin"
$ avg drinks : int 13 56 0 5 10 4 12 71 20 13 ...

$ max drinks : int 26 62 0 5 13 4 24 129 27 13 ...

$ suicidal : chr '"yes" "yes" '"no" "no"

$ treat : chr '"yes" "yes" "mo" "no" ...

$ physicall : num 58.4 36 74.8 61.9 37.3 ...

$ mentall :num 25.11 26.67 6.76 43.97 21.68 ...

$ depressionl: int 49 30 39 15 39 6 32 50 46 49 ...

$ physical2 : num 54.2 59.6 58.5 46.6 31.4 ...

$ mental?2 :num b52.2 41.7 56.8 14.7 40.7 ...

$ depression2: int 7 11 14 44 26 23 18 33 37 8 ...

"homeless"
"treat"
"mental2"

23

24 DATA WRANGLING

Indexing

In R, each row and column is indexed by the position they appear in the data. R uses
square brackets for indexing. Within the square brackets, the first number shows the row
number(s) and the second number shows the column(s). To call a particular column (i.e.,
variables) or a particular row (i.e., persons), we can use the following structure: data[row,
col]

For example, if we want to see the second variable for the fifth person in the medical dataset:

medical[5, 2]

[1] 32

Or, if we want to see the first three variables for the first five persons:

medical[1:5, 1:3]

id age sex
1 1 37 male
2 2 37 male
3 3 26 male
4 4 39 female
5 5 32 male

Instead of medical[1:5, 1:3], we could also do:

medical[c(1l, 2, 3, 4, 5), c(1, 2, 3)]

id age sex
1 1 37 male
2 2 37 male
3 3 26 male
4 4 39 female
5 5 32 male
or

medical[c(1, 2, 3, 4, 5), c("id", "age", "sex")]

SUBSETTING 25

id age sex
1 1 37 male
2 2 37 male
3 3 26 male
4 4 39 female
5 5 32 male

A common way of indexing variables (i.e., columns) in R is to use the dollar sign with a
variable name from a data frame. For example, we can select the age variable as follows:

medical$age

This would print all the values for age in the medical dataset. We can also preview a
particular variable using the head function.

head(medical$age)

[1] 37 37 26 39 32 47

Using a particular variable, we can also see the values for some rows in the data. For example,
let’s print the age variable for the 10th to 15th rows in the medical dataset.

medical$age[10:15]
or

medical$age[c(10, 11, 12, 13, 14, 15)]

Note that now the brackets don’t need a comma inside as we had before. This is because we
have already selected a variable (age) and so R knows that we now refer to rows when we
type any values inside the brackets.

Subsetting

Now assume that we want to create a new dataset with only females from the medical
dataset. Although we can subset the data in many ways, the following two are the easiest:

1. Using the subset function in base R:

26 DATA WRANGLING

medical female <- subset(medical, sex == "female")
head(medical female)

id age sex race homeless substance avg drinks max_drinks suicidal
4 4 39 female white housed heroin 5 5 no
6 6 47 female black housed cocaine 4 4 no
8 9 50 female white homeless alcohol 71 129 no
10 12 58 female black housed alcohol 13 13 no
14 17 28 female hispanic homeless heroin 0 0 yes
17 20 27 female white housed heroin 9 24 yes
treat physicall mentall depressionl physical2 mental2 depression2
4 no 61.93 43.97 15 46.61 14.66 44
6 yes 46.48 55.51 6 43.20 50.06 23
8 no 38.27 22.03 50 45.56 28.88 33
10 no 41.93 13.38 49 52.96 51.45 8
14 yes 44.78 29.80 35 52.69 46.59 19
17 yes 37.45 15.46 52 61.40 41.53 15
Here we use a single selection criterion as sex == "female". We can also subset the data

based on multiple criteria and select only some variables from our original data. Let’s assume
that we want to select participants who are female and 40 years old or older. Also, we only
want to keep the following variables in the dataset: id, age, sex, substance. Using the subset
function, we can do this selection as follows:

medical f40 <- subset(medical, sex == "female" & age >= 40,
c("id", "age", "sex", "substance"))

head (medical f40)

id age sex substance
6 6 47 female cocaine
8 9 50 female alcohol
10 12 58 female alcohol
21 27 48 female cocaine
51 65 41 female alcohol
56 71 40 female alcohol

2. Using the filter function from the dplyr package (an amazing package for data
wrangling):

SUBSETTING 27

Install and activate the package first
install.packages("dplyr")
library("dplyr")

medical female <- filter(medical, sex == "female")
head(medical female)

id age sex race homeless substance avg_drinks max_drinks suicidal
1 4 39 female white housed heroin 5 5 no
2 6 47 female black housed cocaine 4 4 no
3 9 50 female white homeless alcohol 71 129 no
4 12 58 female black housed alcohol 13 13 no
5 17 28 female hispanic homeless heroin 0 0 yes
6 20 27 female white housed heroin 9 24 yes
treat physicall mentall depressionl physical2 mental2 depression2
1 no 61.93 43.97 15 46.61 14.66 44
2 yes 46.48 55.51 6 43.20 50.06 23
3 no 38.27 22.03 50 45.56 28.88 33
4 no 41.93 13.38 49 52.96 51.45 8
5 yes 44.78 29.80 35 52.69 46.59 19
6 yes 37.45 15.46 52 61.40 41.53 15

Using the filter and select functions from the dplyr package, we can also subset the
dataset based on multiple criteria and select some variables from the dataset:

Filter the data first
medical f40 <- filter(medical, sex == "female", age >= 40)

Select the wvariables to be keep
medical f40 <- select(medical_ f40, id, age, sex, substance)

Preview the data
head (medical f40)

There is also a more practical way to accomplish the same task. Here I will demonstrate
%>%, which is called the pipe operator. This operator forwards the result of a function to
the next function. This way we can simplify the code without creating many intermediate
datasets (see https://uc-r.github.io/pipe for more details on the pipe).

medical_f40 <- medical %>} # Send the medical data to filter
filter(sex == "female", age >= 40) %>}, # Filter the data and send it to select
select(id, age, sex, substance) # Finally select the data

https://uc-r.github.io/pipe

28 DATA WRANGLING

Preview the data
head (medical f40)

id age sex substance
6 47 female cocaine
9 50 female alcohol

12 58 female alcohol

27 48 female cocaine

65 41 female alcohol

71 40 female alcohol

o O W N -

Here are most common operators for subsetting:

< Less than

e > Greater than

« == Equal to

e <= Less than or equal to

o >= Greater than or equal to
o !=Not equal to

e %in% Group membership

o & And

e« | Or

 is.na Is missing (NA).

e !is.na Is not missing (NA)

Other Data Manipulation Tools

Here I will mention the other key functions from the dplyr package. These functions solve
the vast majority of data manipulation challenges:

« arrange: Reorder data based on values of variables
« mutate: Create new variables
e summarise: Summarize data by functions of choice

Arrange:

Reorder the data by age
medical_f40 <- arrange(medical_£40, age)

Let's see tf the ordering worked
head(medical £40)

OTHER DATA MANIPULATION TOOLS

id age sex substance
71 40 female alcohol
65 41 female alcohol
75 41 female heroin
121 42 female cocaine
465 42 female alcohol
364 43 female heroin

O O WN -

Reorder the data by age in descending order
medical f40 <- arrange(medical_ £f40, desc(age))

Let's see ©f the ordering worked
head (medical_ £40)

id age sex substance
1 12 58 female alcohol
2 181 57 female alcohol
3 264 55 female heroin
4 9 50 female alcohol
5 134 50 female alcohol
6 27 48 female cocaine
Mutate:

Create a new variable based on age
medical f40 <- medical f40 %>%
mutate (ifelse(age < 45, "Younger than 45", "45 or older"))

Let's see 1f the ordering worked
head (medical £40)

id age sex substance age2
12 58 female alcohol 45 or older
181 57 female alcohol 45 or older
264 b5 female heroin 45 or older
9 50 female alcohol 45 or older
134 50 female alcohol 45 or older
27 48 female cocaine 45 or older

O O WN -

We will use the summarise function in the next section.

30 DATA WRANGLING

Exercise 4
1. Using the medical dataset, create a subset where the patients:
 are older than 30 years old: age > 30

e are female: sex == "female"
e are not homeless: homeless != "homeless"

and save this data as medical_example. You can use either subset or filter for this task.

2. Use the dim function to see how many rows you have in the new data
3. Sort this new dataset by age in descending order

4. Use the head function to preview the final dataset

Descriptive Statistics

Quick Summary

The easiest way to get a quick summary of a dataset in R is to the summary() function.
This function provides the min and max, mean, median, and first and third quartiles for the
entire dataset or variables that we select. Let’s take a look at the summary table for the
medical dataset for a few variables.

summary (medicall[,c("sex", "race", "age", "avg drinks")])
sex race age avg_drinks
Length:246 Length:246 Min. :20.0 Min. : 0.0
Class :character Class :character 1st Qu.:31.0 1st Qu.: 2.0
Mode :character Mode :character Median :35.0 Median : 12.0
Mean :36.3 Mean 171
3rd Qu.:41.0 3rd Qu.: 24.0
Max. :60.0 Max. :142.0

R often knows which variables are numerical (i.e., quantitative) and which variables are
characters (i.e., qualitative). In the output above, we see a bunch of summary statistics for
each variable. For character variables, we only see the length value — which is the number
of rows for these variables.

We can see the summary table for the entire dataset using:

summary (medical)

Frequency Tables

Another handy function in base R is table which tabulates the data and creates frequency
tables for variables. If the variable is a character, it will show the frequency of each level; if
the variable is numerical, it will show the frequency of each value.

31

32 DESCRIPTIVE STATISTICS

Frequency tables for homeless status and sex
table(medical$homeless)

homeless housed
118 128

table(medical$sex)

female male
57 189

Frequency table for age
table(medical$age)

20 22 23 24 25 26 2

7 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
2 7 3 4 2 6 8

4

1

9

412 719 14 11 16 11 16 6 16 5 8 7 10 3 6 2
47 48 49 50 51 53 5 6
10 5 4 2 1 2 1

57 58 60
1 2 1

The output is kind of messy. The first row shows the age values and the second row shows
how many times those values appear in the dataset. Let’s reformat our frequency table into
a more readable format.

age_table <- as.data.frame(table(medical$age))
head (age_table)

Varl Freq
20
22
23
24
25
26

O WN -
DN W NN

We can rename the columns with better names using the colnames() function.

colnames(age_table) <- c("Age", "Frequency")
head (age_table)

FREQUENCY TABLES 33

Age Frequency
20
22
23
24
25
26

O O WN -
DN P W NN

Sometimes these raw freqency values are hard to interpret. Therefore, we may prefer to have
proportions or percentages rather than actual frequency values. For this task, we need to
use prop.table. Let’s see the proportion of male and female participants in the data.

Proportions
prop.table(table(medical$sex))

female male
0.2317 0.7683

Percentages
prop.table(table(medical$sex))*100

female male
23.17 76.83

Percentages rounded (no decimal points)
round (prop.table(table(medical$sex))*100, 0)

female male
23 77

We can also use the table function for cross-tabulation. For example, if we want to see the
number of homeless and housed patients by sex:

Frequencies
table (medical$homeless, medical$sex)

female male
homeless 22 96
housed 35 93

34

Proportions

prop.table(table(medical$homeless, medical$sex))

female male
homeless 0.08943 0.39024
housed 0.14228 0.37805

Percentages

DESCRIPTIVE STATISTICS

prop.table(table(medical$homeless, medical$sex))*100

female male
homeless 8.943 39.024
housed 14.228 37.805

Percentages rounded to the 2nd decimal point

round (prop.table(table(medical$homeless, medical$sex))*100, 2)

female male
homeless 8.94 39.02
housed 14.23 37.80

Exercise 5

Use the table and prop.table functions to create a cross-tabulation for race and
substance. We want to see the percentages. Which group is the largest and which group is

the smallest based on their percentages?

Central Tendency and Dispersion

Central tendency refers to indices or measures that gives us an idea about the center of the

data. Typical central tendency measures are:

« Mean: The sum of the values for a given variable divided by the number of values
(n). Mean is typically denoted by X (read as “x bar”) or simply M. We can find the

mean as:

CENTRAL TENDENCY AND DISPERSION 35

Xi+Xo+ X5+ ...+ X,
- .

X =

e Median: The middle value for a given variable when the values are sorted from
smallest to largest.

Dispersion refers to statistics that tell us how dispersed or spread out the values of a variable
are. Typical dispersion measures are:

« Standard deviation: A typical difference (deviation) between a particular value and
the mean of a variable. Standard deviation is denoted by o (read as “sigma”). We can
find the standard deviation as:

S [VES GiEYE S RN A

n

e Variance: Variance is the squared value of standard deviation, o2.

e Quantiles: If we divide a cumulative frequency curve into quarters, the value at the
lower quarter is referred to as the lower quartile, the value at the middle gives the
median and the value at the upper quarter is the upper quartile.

« Range: Difference between the biggest value and the smallest value of a variable.

« Interquartile range (IQR): Like the range, but instead of calculating the difference
between the biggest and smallest values, it calculates the difference between the 25th
quantile and the 75th quantile.

In R, we can calculate all of these statistics very easily. A critical point is that if the variable
has missing values, then these statistics cannot be computed. Therefore, we need to add
na.rm = TRUE inside the functions to remove missing values before calculations begin. Let’s
try the variable age.

Mean

mean (medical$age, TRUE)
[1] 36.31

Median

median(medical$age, TRUE)

[1] 35

36 DESCRIPTIVE STATISTICS

Standard deviation
sd(medical$age, TRUE)

[1] 7.984

Variance
var (medical$age, TRUE)

[1] 63.75

Quantile
quantile(medical$age, TRUE)

0% 25% 50% 75% 100%
20 31 35 41 60

95th percentile
quantile(medical$age, 0.95)

95%
49.75

Range
range (medical$age, TRUE)

[1] 20 60

Min and max values

min(medical$age, TRUE)
[1] 20
max (medical$age, TRUE)
[1] 60

We can also calculate central tendency and dispersion by grouping variables, using the
tapply function. Let’s take a look at average and median age by sex.

CENTRAL TENDENCY AND DISPERSION 37

tapply(medical$age, medical$sex, mean)

female male
37.07 36.08

tapply(medical$age, medical$sex, median)

female male
35 36

We can combine these functions using the summarise function from the dplyr package.

medical %>%

summarise(mean (age, TRUE) ,
median(age, TRUE) ,
sd(age, TRUE) ,
var (age, TRUE))

mean_age median_age sd_age var_age
1 36.31 35 7.984 63.75

We can also create summaries by grouping variables using the group_by function from the
dplyr package. Let’s take a look at the summary of age by sex.

medical %>%
group_by (sex) %>%

summarise (n(), # Count by sezx
mean (age, TRUE), # Mean
median(age, TRUE) , # Median
sd(age, TRUE), # Standard deviation
var (age, TRUE)) # Variance

A tibble: 2 x 6

sex n mean_age median_age sd_age var_age
<chr> <int> <dbl> <int> <dbl> <dbl>
1 female 57 37.1 35 8.51 72.4
2 male 189 36.1 36 7.83 61.3

Another conventient way to summarize a dataset descriptively is to use the skim function
from the skimr package (Waring et al. 2020). Let’s try it with our medical dataset.

38 DESCRIPTIVE STATISTICS

Let's install and activate the package
install.packages("skimr")
library("skimr")

To summarize the entire dataset:

skim(medical)

To summarize some variables:

skim(medical, mentall, mental2, avg drinks, max_drinks)

To summarize the dataset by grouping variables:

medical %>%
group_by(sex) %>%
select(sex, mentall, mental2, avg drinks, max_drinks) %>%
skim()

Exercise 6

Using the summarise function from the dplyr package or the skim function from the skimr
package, create a summary of the variable depressionl by race. If you decide to use
summarise, you need to include count, mean, standard deviation, minimum, and maximum
values.

Data Visualizations in R

Base R Graphics

When it comes to data visualization, R is a wonderful software program. We can create a
wide range of visualizations, from simple scatterplots and histograms to animated or inter-
active graphics. Let’s start by drawing a few very simple graphs just to get a feel for what
it’s like to draw pictures using base R functions. In each plot, there are several elements
that we can modify:

o main: Title for the figure
e xlab: Label for the x-axis
e ylab: Label for the y-axis

There are also a bunch of graphical parameters that we can use to customise the font style:

o Font styles: font.main, font.sub, font.lab, font.axis. These four parameters
control the font style used for the plot title (font.main), the subtitle (font.sub), the
axis labels (font.lab: note that you can’t specify separate styles for the x-axis and
y-axis without using low level commands), and the numbers next to the tick marks on
the axis (font.axis). Somewhat irritatingly, these arguments are numbers instead of
meaningful names: a value of 1 corresponds to plain text, 2 means boldface, 3 means
italic and 4 means bold italic.

o Font colours: col.main, col.sub, col.lab, col.axis. These parameters do pretty
much what the name says: each one specifies a colour in which to type each of the
different bits of text. Conveniently, R has a very large number of named colours (type
colours() to see a list of over 650 colour names that R knows), so you can use the
English language name of the colour to select it. Thus, the parameter value here string
like "red", "gray25" or "springgreen4".

o Font size: cex.main, cex.sub, cex.lab, cex.axis. Font size is handled in a slightly
curious way in R. The “cex” part here is short for “character expansion,” and it’s
essentially a magnification value. By default, all of these are set to a value of 1, except
for the font title: cex.main has a default magnification of 1.2, which is why the title
font is 20% bigger than the others.

39

40 DATA VISUALIZATIONS IN R

o Font family: family. This argument specifies a font family to use: the simplest way
to use it is to set it to "sans", "serif", or "mono", corresponding to a san serif font, a
serif font, or a monospaced font. If you want to, you can give the name of a specific font,
but keep in mind that different operating systems use different fonts, so it’s probably
safest to keep it simple. Better yet, unless you have some deep objections to the R
defaults, just ignore this parameter entirely.

Boxplots

boxplot (medical$depressioni,
"Depression Scores")

Depression Scores

10 20 30 40 50

0
I

Figure 13: A boxplot example

What R draws is shown in the figure, the most basic boxplot possible. When we look at
this plot, this is how we should interpret it: the thick line in the middle of the box is the
median; the box itself spans the range from the 25th percentile to the 75th percentile; and
the “whiskers” cover the full range from the minimum value to the maximum value.

We can also create the boxplots by a grouping variable. For this, we have to use a formula
rather than a single variable. Let’s create a boxplot of depression scores by sex.

BASE R GRAPHICS 41

boxplot(depressionl ~ sex,
medical,
"Depression Scores by Sex",
"Depression at the baseline",
c("Female", "Male"))
Depression Scores by Sex
) |
= 9 ! :
o Wb : |
@ |
o o !
o Y
<
=z o
T ™ :
c | .
o o ' '
n N | ,
7 |
¢ o |
o - |
[|
(@] 8
o
I I
Female Male
Sex
Figure 14: A boxplot by a grouping variable
Histograms

hist(medical$depressionl,

Bar Graphs

"Depression Scores at the Baseline',
"Depression")

Bar plots are essentially histograms for categorical variables (e.g., sex, race, etc.). Before
we create a bar plot, we need to make sure that our categorical variables are “factors.”
Otherwise, R attempts to treat such variables as quantative and thus fails to return a plot.

42 DATA VISUALIZATIONS IN R

Depression Scores at the Baseline

o _
=
P =)
o_
e ™
o
=}
o o _|
)
p -
L
o _|
—
O_ — |

I I I I I I I
0 10 20 30 40 50 60

Depression

Figure 15: A histogram example

Let's save race as a factor
medical$race <- as.factor(medical$race)

Create a bar graph for race

plot(medical$race,
"Race Groups in the medical Dataset",
"Race",
"Count")

Scatterplots

A scatterplot of depression scores at the baseline (depressionl) against depression scores
after 6 months (depression2):

plot(medical$depressionl, medical$depression?2,
"Depression at the baseline",
"Depression after 6 months",
"Scatterplot of Depression Scores")

BASE R GRAPHICS 43

Count

Depression after 6 months

120

0O 20 40 60 80

10 20 30 40 50

0

Race Groups in the medical Dataset

black hispanic other white

Race

Figure 16: A bar graph example

Scatterplot of Depression Scores

o) °© 8%
o) o) OO o O
% O OO0
o) o
o ° % 8 o© OOOOO O "o
o © o 0@8%% © o O
o)

o 80 o) (@) (@)
- o°ogf°°o88oo§ooo%°°°88 :
oooog BO g S o 8 o
fo'0) e} OOOO O @@ OO OO
0800@ oooo 030 g © o)

(o) (DO (ﬁb ©OOO

[e'e) B © oooo loXo)
[[[[[
10 20 30 40 50

Depression at the baseline

Figure 17: A scatterplot example

44

We can customise the appearance of the actual plot. To start with, let’s look at the single
most important options that the plot () function provides for us to use, which is the type
argument. The type argument specifies the visual style of the plot. The possible values for

this are:

e type

. type =

e type
e type
e type
e type
e type
e type
e type

The simplest way to illustrate what each of these really looks like is just to draw them.
Figure 18 shows a scatterplot using six different types of plot. As you can see, by altering

"p". Draw the points only
"1". Draw a line through the points
"o". Draw the line over the top of the points

DATA VISUALIZATIONS IN R

"b". Draw both points and lines, but don’t overplot

"h". Draw “histogram-like” vertical bars

"s". Draw a staircase, going horizontally then vertically
"S". Draw a Staircase, going vertically then horizontally
"c". Draw only the connecting lines from the “b” version

"n". Draw nothing

the type argument we can get a qualitatively different appearance to our plot.

type ='p' type ='0' type ='h'
o
(-]
)
)
° | ‘
o o L |
type = type ='b' type ='s'
o

o/ J

o T

Figure 18: Changing the ‘type‘ of the plot.

BASE R GRAPHICS 45

Scatterplots + Boxplots

The scatterplot function from the car package (Fox, Weisberg, and Price 2020) gives a
nice plot that includes boxplots for individual variables and a scatterplot of the two variables
together.

Install and activate the car package
install.packages("car"
library("car"

scatterplot(depressionl ~ depression2,
medical,
FALSE)

50

40

30
|

depressionl

20

10

depression2

— | |

Figure 19: A scatterplot along with boxplots

Scatterplot Matrix

Often we find yourself wanting to look at the relationships between several variables at once.
One useful tool for doing so is to produce a “scatterplot matrix,” analogous to the correlation
matrix. We can create a scatterplot matrix using the pairs function in base R. Let’s take
a look at the following variables: depressionl, mentall, and physicall.

46 DATA VISUALIZATIONS IN R

pairs(~ depressionl + mentall + physicall,
medical,
"Scatterplot Matrix with Three Scores")

Scatterplot Matrix with Three Scores

10 20 30 40 50 60

20 40

depressionl

0

10 30 50

physicall

20 40 60

I I I I I I
0 10 20 30 40 50 20 30 40 50 60 70

Figure 20: A scatterplot matrix from the ‘pairs()* function

Saving Base R Figures

We can save figures generated by base R functions in several ways:

e jpeg("filename. jpg")
e png("filename. jpng")
pdf ("filename.pdf")

o tiff("filename.tif")

For example, to save our plot using .jpg format, we would do:

jpeg("myplot. jpg", 8, 4, "in", 300)
plot(medical$depressionl, medical$depression2)
dev.off ()

where width and height are dimensions in inches (units = "in") and resolution is 300 dpi.

GGPLOT2 GRAPHICS 47

Exercise 7

Here you will create two plots:

1. A boxplot of mentall (i.e., mental test scores at the baseline) by substance (i.e., type
of substance being used). Do you see any differences between the mental test scores of
the three substance groups?

2. A scatterplot of depressionl against mentall. You need to see the depression scores
on the x-axis and the mental test scores on the y-axis. What type of relationship do
you see between the two variables (e.g., negative, positive, or no relationship)?

ggplot2 Graphics

What is ggplot2?

o A comprehensive data visualization package in R

o Popular method for creating explanatory graphics

Simpler than base R graphics due its multi-layer approach

e Many other supplementary packages using the ggplot2 platform

How ggplot2 works?

The ggplot2 package (Wickham et al. 2020) follows data visualization rules known as “The
Grammar of Graphics.” The grammar tells us that a statistical graphic is a mapping of
data variables to aesthetic attributes of geometric objects.

Specifically, we can break a graphic into the following three essential components:

o data: the data set composed of variables that we map.

o geom: the geometric object in question. This refers to the type of object we can observe
in a plot. For example: points, lines, and bars.

« aes: aesthetic attributes of the geometric object. For example, color, shape, and size.
Each assigned aesthetic attribute can be mapped to a variable in our data set.

Figure 21 shows these three components are laid out in a typical ggplot2 function. As we
can see, each part (e.g., geom_function) is added to the plot using a plus sign. That is,
each layer like that brings an additional functionality into the plot we are drawing.

In order to keep things simple, we will only take a look at the following types of graphics in
ggplot2:

o scatterplots

48 DATA VISUALIZATIONS IN R

ggplot(data = <DATA>, mapping = aes(<MAPPINGS>)) +
geom_functions() + <other functions>

*

* geom_ type of graphics (shapes)

* stat_* statistical representation of the data

« scale_* visual values (axis scale, color scale, etc.)

« facet_* divide plot into subplots

» theme(_*) adjust background colors, grid lines, font size, etc.

Figure 21: How the elements of ‘ggplot2‘ work

e boxplots
e histograms
o bar plots

For more information on ggplot2, check out http://ggplot2.tidyverse.org/.

Scatterplots

Activate the package first
library("ggplot2")

ggplot(data = medical,
mapping = aes(depressionl, depression2)) +
geom_point(size = 3) +
labs(x = "Depression (Baseline)",
y = "Depression (6 months)") +
theme_bw() # for black & white theme

ggplot(data = medical,
mapping = aes(depressionl, depression2, colour = sex)) +
geom_point(size = 3) +
geom_smooth(method = 1lm, color = "red", se = TRUE) +

labs(colour = "Sex",
x = "Depression (Baseline)",
y = "Depression (6 months)") +

theme_bw() # for black & white theme

http://ggplot2.tidyverse.org/

GGPLOT2 GRAPHICS

Depression (6 months)

Depression (6 months)

N
o
1

N
o
1

401

204

° ¢ S % °
e o ° . ® o
° ° ® o oo
® ° o® %8 ® e
° o % o o
o ° o o %% h °
$ o3 o ® i
o0 o‘? °
o * 0% Soge %e o
o © o o4 > 8> % © o
° ° 8% e " 00
ofete Qg H‘ ® o o °
P ® S o° o °
° ° o o °
o ©.9% o 0% 5.° o
00’ o 00°° o ¢g° o
®e oo o ® o :... ° . %
o8 o % ° %% o0
(I) 2I0 4IO
Depression (Baseline)
Figure 22: A scatterplot example with ‘ggplot2
Sex
©® female
® male

Depression (Baseline)

Figure 23: A scatterplot example with ‘ggplot2‘ (With regression line)

49

50 DATA VISUALIZATIONS IN R

Boxplots

ggplot(data = medical,
mapping = aes(x = sex, y = depressionl, fill = race)) +
labs(x = "Sex",
y = "Depression at the baseline",
fill = "Race") +
geom_boxplot() +
theme bw()

o)
=
© 40
§ Race
2 ES black
= ‘ hispanic
.5 I.I other
% 20 A ‘ white
o
8 °
[]
s * .
O-
female male
Sex
Figure 24: A boxplot example with ‘ggplot2
Histograms

ggplot(data = medical,
mapping = aes(x = depressionl)) +

labs(x = "Depression at the baseline",
y = "Frequency",
title = "Depression Scores at the the Baseline") +

geom_histogram(color = "white", # color of bar lines

GGPLOT2 GRAPHICS o1

fill
bins

"steelblue", # filling color
40) + # number of bins

theme _bw()

Depression Scores at the the Baseline

15+

ol W II.III ||I|III||||‘|‘|‘||||I‘I|II II]
0 20 40 60

Depression at the baseline

[EnY
o
1

Frequency

(63}
1

Figure 25: A histogram example with ‘ggplot2

Bar Plots

ggplot(data = medical,
mapping = aes(x = race)) +
labs(x = "Race",
y = "Frequency") +
geom_bar(color = "white",
fill = "orange") +
theme bw()

ggplot(data = medical,
mapping = aes(x = race, fill = sex)) +
labs(x = "Race",

52 DATA VISUALIZATIONS IN R

100 -
>
&)
c
()
S
o
o
) ||||||||||||
O - - -
black hispanic other white
Race

Figure 26: A bar plot example with ‘ggplot2

y = "Frequency") +
geom_bar() +
theme bw()

ggplot(data = medical,
mapping = aes(x = race, fill
labs(x = "Race",
y = "Frequency") +
geom_bar (position = "dodge") +
theme bw()

sex)) +

ggplot(data = medical,
mapping = aes(x = race, fill
labs(x = "Race",
y = "Frequency") +
geom_bar (position = "dodge") +
facet_wrap(. ~ sex) +
theme _bw()

sex)) +

GGPLOT2 GRAPHICS 53

100

>
(@)
c
9]

>

o

o

. I

04 - -
blallck hisplanic ottlwer whlite
Race
Figure 27: A bar plot example with ‘ggplot2‘ (stacked bar chart)
754

>

(&)

c

@ 504

>

o

o

L

254
o- J J
b|6lle hisplanic otrl1er whlite
Race

Figure 28: A bar plot example with ‘ggplot2‘ (side-by-side bars)

o4 DATA VISUALIZATIONS IN R

female male

754
>
&)
c
O 50 A
S
o
o
L

25- I

ol B . . -

black hispanic other white black hispanic other white
Race

Figure 29: A bar plot example with ‘ggplot2‘ (faceted)

Exercise 8

Here you will create a scatterplot of depressionl and mentall using geom_point (), with

« point colours set by sex (i.e., colour = sex)
o faceted by substance (i.e., facet_wrap(. ~ substance))

Do sex or substance seem to affect the relationship between depressioni and mentall?

Hypothesis Testing

Some Theory

Statistics cannot prove anything with certainty. Instead, the power of statisti-
cal inference derives from observing some pattern or outcome and then using
probability to determine the most likely explanation for that outcome (Wheelan
2013).

In its most abstract form, hypothesis testing has a very simple logic: the researcher has some
theory about the world and wants to determine whether or not the data actually support
that theory. In hypothesis testing, we want to:

o explore whether parameters in a model take specified values or fall in certain ranges
o detect significant differences, or differences that did not occur by random chance

To address these goals, we will use data from a sample to help us decide between two
competing hypotheses about a population. These two completing hypotheses are:

« a null hypothesis (H,) that corresponds to the exact opposite of what we want to
prove
 an alternative hypothesis (H;) that represents what we actually believe.

The claim for which we seek significant evidence is assigned to the alternative hypothesis.
The alternative is usually what the researcher wants to establish or find evidence for. Usually,
the null hypothesis is a claim that there really is “no effect” or “no difference.” In many
cases, the null hypothesis represents the status quo or that nothing interesting is happening.

For example, we can think of hypothesis testing in the same context as a criminal trial.
A criminal trial is a situation in which a choice between two contradictory claims must be
made.

e The accuser of the crime must be judged either guilty or not guilty.
o Under the rules of law, the individual on trial is initially presumed not guilty.

%)

56 HYPOTHESIS TESTING

e Only strong evidence to the contrary causes the not guilty claim to be rejected in favor
of a guilty verdict.

The phrase “beyond a reasonable doubt” is often used to set the cut-off value for when
enough evidence has been given to convict. Theoretically, we should never say “The person
is innocent” but instead “There is not sufficient evidence to show that the person is guilty.”
That is, technically it is not correct to say that we accept the null hypothesis. Accepting
the null hypothesis is the same as saying that a person is innocent. We cannot show that a
person is innocent; we can only say that there was not enough substantial evidence to find
the person guilty.

Types of Inferential Statistics

We assess the strength of evidence by assuming the null hypothesis is true and determining
how unlikely it would be to see sample statistics as extreme (or more extreme) as those in
the original sample. Using inferential statistics allows us to make predictions or inferences
about a population from observations based on a sample. We can calculate several inferential
statistics:

1. Whether a sample mean is equal to a particular value:
o One sample t-test (Hy : pu = value)
2. Whether two sample means are equal:

 Independent samples t-test (Hg : 1 = pg or Ho : g — po = 0)
» Repeated measures t-test (Hy : up = 0 or Hy : 13 — g = 0)

3. Whether three or more groups have equal means:

o ANOVA (Hy:py =g =g =+ = i)

One-Sample ¢ Test

Suppose we wish to test for the population mean (u) using a dataset of size (n), and the
population standard deviation (o) is not known. We want to test the null hypothesis Hy :
i = pp against some alternative hypothesis, with («) level of significance.

The test statistic will be:

with df =mn — 1 degrees of freedom. In the formula:

ONE-SAMPLE T TEST 57

e I is the sample mean

e 1o is the population mean that we are comparing against our sample mean
e S is the sample standard deviation

e n is the sample size

If t > teriicar at the a level of significance, we reject the null hypothesis; otherwise we retain
the null hypothesis.

Example

Let’s see one-sample t-test in action. All the patients in the medical dataset received a
mental test at the baseline (when they were accepted to the study). The researcher who
created the mental test reported that the mean score on this test for people with no mental
issues should be around 35. Now we want to know whether the mean mental test for our
sample of patients differs from the mean mental test score for the general population. Our
hypotheses are:

o Hy:p=35
e Hy:pn#35

Let's see the mean for mentall in the data
mean (medical$mentall)

[1] 31.68

It looks like our sample mean is less than the population mean of 35. But, the question
is whether it is small enough to conclude that there is a statistically significant difference
between the sample mean (i.e., 31.68) and the population mean (i.e., 35).

t.test (medical$mentall, 35, 0.95, "two.sided")

One Sample t-test

data: medical$mentall
t =-4.2, df = 245, p-value = 4e-05
alternative hypothesis: true mean is not equal to 35
95 percent confidence interval:
30.11 33.25
sample estimates:
mean of x
31.68

58 HYPOTHESIS TESTING

The 1sr package (Navarro 2015) does the same analysis and it provides more organized
output:

Install the activate the package
install.packages("lsr")
library("lsr")

Run one-sample t test
oneSampleTTest (x=medical$mentall, 358 0.95, FALSE)

One sample t-test
Data variable: medical$mentall

Descriptive statistics:
mentall
mean 31.680
std dev. 12.486

Hypotheses:
null: population mean equals 35
alternative: population mean not equal to 35

Test results:
t-statistic: -4.17
degrees of freedom: 245
p-value: <.001

Other information:
two-sided 95% confidence interval: [30.112, 33.248]
estimated effect size (Cohen's d): 0.266

Conclusion: With the significance level of o = .05, we reject the null hypothesis that the
average mental score in the medical dataset is the same as the average mental score in the
population, t(240) = —4.2, p < .001, C'ly; = [30.11, 33.25].

Independent-Samples ¢t Test

Suppose we have data from two independent populations, x; ~ N(pug,,0,,) and xo ~
N(ptzy, 0z,). We wish to determine whether the two population means, u,, and p,,, are
the same or different. We want to test the null hypothesis Hy : pux, = px, against some
alternative hypothesis, with « level of significance. The test statistic will be:

INDEPENDENT-SAMPLES T TEST 59

N)
ST
s N9

and

ny + Ng — 2

Sp = (
with df = ny + ny — 2 degrees of freedom. In the formula:

o 1 is the sample mean response of the first group

e Ty is the sample mean response of the second group

 S? is the sample variance of the response of the first group

o« S7 is the sample variance of the response of the second group
« S, is the pooled variance

e n, is the sample size of the first group

e ngy is the sample size of the second group

If t > t.iica at the a level of significance, we reject the null hypothesis; otherwise we retain
the null hypothesis.

Example

Using the medical dataset, we want to know whether there was a significant difference
between male and female patients’ depression levels at the baseline. We will use sex and
depressionl to investigate this question. Before we test this question, let’s see the boxplot
for these two groups:

boxplot(depressionl ~ sex,
medical,
"Depression Scores by Sex",
"Depression at the baseline",
c("Female", "Male"))

It seems that female patients have higher levels of depression on average, compared to male
patients. Next, we will create two new small datasets (male and female) that consist of only
depression scores for each gender group.

male <- subset(medical, sex == '"male", "depressionl")
female <- subset(medical, sex == '"female", "depressionl")
t.test(male, female, 0.95, "tyo.sided")

60 HYPOTHESIS TESTING

Depression Scores by Sex

10 20 30 40 50

Depression at the baseline

0
I

| |
Female Male

sex

Figure 30: Boxplot of depression scores by sex

Welch Two Sample t-test

data: male and female
t = -2.5, df = 87, p-value = 0.02
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-8.418 -0.928
sample estimates:
mean of x mean of y
31.50 36.18

We can again use the 1lsr package to get a better output. independentSamplesTTest
function does not require us to separate the dataset for each group. We only need to specify
the group variable, which is sex in our example. The only thing we need to make sure that
the group variable is a factor.

medical$sex <- as.factor(medical$sex)

independentSamplesTTest (depressionl ~ sex,
0.95,
FALSE,
medical)

T-TEST WITH PAIRED DATA 61

Welch's independent samples t-test

Outcome variable: depressionl
Grouping variable: sex

Descriptive statistics:
female male
mean 36.175 31.503
std dev. 12.675 11.758

Hypotheses:
null: population means equal for both groups
alternative: different population means in each group

Test results:
t-statistic: 2.48
degrees of freedom: 87.09
p-value: 0.015

Other information:
two-sided 95% confidence interval: [0.928, 8.418]
estimated effect size (Cohen's d): 0.382

Conclusion: With the significance level of @ = .05, we reject the null hypothesis that
the average depression score for male and female patients is the same in the population,
t(87) = —2.5, p < .05, Cly; = [—8.42,—0.93].

t-test with Paired Data

Suppose we have paired data, X; and X, with D = X; — X5 ~ N(up,0). We wish to
determine whether the two population means (or a single population across two time points),
iy, and px,, are the same (i.e., up = 0) or different (i.e., up # 0). We test the null
hypothesis Hy : ux = py against some alternative hypothesis, with « level of significance.
The test statistic will be:

RS INT

with df = n — 1 degrees of freedom. In the formula:

e D is the difference between two populations (or two time points)
e Sp is the sample standard deviation of the difference
o n is the sample size of the second group

62 HYPOTHESIS TESTING

If t > t.iica at the o level of significance, we reject the null hypothesis; otherwise we retain
the null hypothesis.

Example

Using the medical dataset, this time we want to know whether patients’ depression scores
at the baseline (depressionl) are the same as their depression scores after 6 months
(depression2). First, let’s see the means for the two variables.

mean (medical$depressionl)

[1] 32.59

mean (medical$depression?2)

[1] 22.72

It seems that the scores at month 6 are much lower. Let’s see if the difference is statistically
significant.

t.test(medical$depressionl, medical$depression?2,
TRUE, "two.sided",
0.95)

Paired t-test

data: medical$depressionl and medical$depression?2
t =11, df = 245, p-value <2e-16
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
8.021 11.719
sample estimates:
mean of the differences
9.87

Let’s repeat the same analysis with the 1sr package.

pairedSamplesTTest (~ depressionl + depression2,
0.95,
FALSE,
medical)

ANALYSIS OF VARIANCE (ANOVA) 63

Paired samples t-test
Variables: depressionl , depression2

Descriptive statistics:
depressionl depression2 difference

mean 32.585 22.715 9.870
std dev. 12.112 14.287 14.727
Hypotheses:
null: population means equal for both measurements

alternative: different population means for each measurement

Test results:
t-statistic: 10.51
degrees of freedom: 245
p-value: <.001

Other information:
two-sided 95% confidence interval: [8.021, 11.719]
estimated effect size (Cohen's d): 0.67

Conclusion: With the significance level of a = .05, we reject the null hypothesis that the
average depression scores for the baseline and 6th month are the same in the population,
£(245) = 10.51, p < .001, Clys = [8.02, 11.72].

Analysis of Variance (ANOVA)

Independent-samples t-test that we have seen earlier is suitable for comparing the means of
two independent groups. But, what if there are more than two groups to compare? One
could suggest that we run multiple t-tests to compare all possible pairs and make a decision
at the end. However, each statistical test that we run involves a certain level of error (known
as Type I error) that leads to incorrect conclusions on the results. Repeating several ¢-
tests to compare the groups would increase the likelihood of making incorrect conclusions.
Therefore, when there are three or more groups to be compared, we follow a procedure called

Analysis of Variance — or shortly ANOVA.

Suppose we have K number of populations. Collect a random sample of size n; from pop-
ulation 1, ns from population 2, ..., ng from population k. We assume all populations
have the same standard deviation (and they are normally distributed). We wish to test the
following null hypothesis:

Hy:pp=po=ps=-+-=pug

64 HYPOTHESIS TESTING
against

H, : Hy is false

which means that all of the groups would have equal means in their populations. If at least
one of the groups has a significantly different mean, then we would reject the null hypothesis
and run post-hoc tests to find out which group(s) are different.

Let N = 3K ny be the grand total, (Z, = i ik, xki) be the sample mean for sample k,
and T. = % Zszl Stk xp; be the grand mean. Then, the F-statistic is

SR @me—w) (K -)
SHoy Sy (ki — T)* /(N — K)
with degrees of freedom of dff = K — 1 and dfs = N — K.

If ' > F,itica at the a level of significance, we reject the null hypothesis; otherwise we retain
the null hypothesis.

Example

Using the medical dataset, we want to investigate whether patients with different types of
substance addition had the same level of depression at the baseline. We will use depressionl
and substance for this analysis. Before we begin the analysis, let’s visualize the distribution
of depressionl by substance to get a sense of potential group differences.

boxplot(depressionl ~ substance,
medical,
"Depression Scores by Substance Type",
"Depression at the baseline")

The boxplot shows that the means are close across the three groups but we cannot tell for
sure if the differences are negligible to ignore. We will use the aov function — which is part
of base R.

Compute the analystis of wariance
aov_modell <- aov(depressionl ~ substance, medical)

Summary of the analysts
summary (aov_modell)

Df Sum Sq Mean Sq F value Pr(>F)
substance 2 1209 605 4.23 0.016 *
Residuals 243 34733 143

Signif. codes: O 's*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

ANALYSIS OF VARIANCE (ANOVA) 65

Depression Scores by Substance Type

Q 1 I B e
S o | ' ! :
[} Tel X X X
8 1 1 1
o o _| ' :
© <
c
+— o |
T ™ ,
c X '
O o — 1 1
(7) N 1 : :
) X ! '
e o _] ! 1 :
o — : |
A e | o
o —
| | |
alcohol cocaine heroin
substance

Figure 31: Boxplot of depression scores by substance type

Conclusion: With the significance level of o = .05, the output shows that F(2,243) =
4.23,p < .05, indicating that the test is statistically significant and thus we need to reject
the null hypothesis of equal group means. This finding also suggests that at least one of the
groups is different from the others.

As the ANOVA test is significant, now we can compute Tukey HSD (Tukey Honest Significant
Differences) for performing multiple pairwise-comparison between the means of groups. The
function TukeyHD() takes the fitted ANOVA as an argument and gives us the pairwise-
comparison results.

TukeyHSD (aov_modell)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = depressionl ~ substance, data = medical)

$substance

diff lwr upr p adj
cocaine-alcohol -4.62684 -8.7730 -0.4807 0.0245
heroin-alcohol -0.08964 -4.7249 4.5456 0.9989
heroin-cocaine 4.53720 -0.1281 9.2025 0.0586

66 HYPOTHESIS TESTING

In the output above,

« diff: difference between means of the two groups
e lwr, upr: the lower and the upper end point of the confidence interval at 95%
e p adj: p-value after adjustment for the multiple comparisons

It can be seen from the output that only the difference between cocaine and alcohol is
significant with an adjusted p-value of 0.0245.

We can add other variables into the ANOVA model and continue testing. Let’s include sex

as a second variable.

Substance + Sex
aov_model2 <- aov(depressionl ~ substance + sex, medical)
summary (aov_model2)

Df Sum Sq Mean Sq F value Pr(>F)

substance 2 1209 605 4.36 0.0138 *

sex 1 1199 1199 8.65 0.0036 *x*

Residuals 242 33534 139

Signif. codes: O 'sx*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Substance + Sex + Substance = Sex
aov_model3 <- aov(depressionl ~ substance*sex, medical)
summary (aov_model3)

Df Sum Sq Mean Sq F value Pr(>F)

substance 2 1209 605 4.38 0.0135 *

sex 1 1199 1199 8.69 0.0035 *x
substance:sex 2 435 218 1.58 0.2083

Residuals 240 33098 138

Signif. codes: O 'xxx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The output shows that sex is also statistically significant in the model; but the interaction
of sex and substance is not statisticall significant.

Exercise 9

Now you will run two hypothesis tests using the variables in the medical dataset:

ADDITIONAL PACKAGES TO CONSIDER 67

1. Run an independent-samples ¢-test where you will investigate whether the average
depression scores at the baseline (i.e., depressionl) are the same for suicidal patients
(i.e., suicidal == "yes") and non-suicidal patients (i.e., suicidal == "no").

2. You will conduct an ANOVA to investigate whether the patients’ physical scores at
the baseline (i.e., physicall) differ depending on their race (i.e., race).

Additional Packages to Consider

There are also additional R packages that might be useful when conducting t-tests. One
of these packages is report (https://github.com/easystats/report). This package automati-
cally produces reports of models and data frames according to best practices guidelines (e.g.,
APA’s style), ensuring standardization and quality in results reporting.

Install the activate the package

install.packages("report")

library("report")

Run an independent-samples t test and create a report
report(t.test(male, female, 0.95, "two.sided"))

Run ANOVA and create a report
report(aov(depressionl ~ substance + sex, medical))

Effect sizes were labelled following Cohen's (1988) recommendations.

The Welch Two Sample t-test testing the difference between male and female (mean of x =

The ANOVA (formula: depressionl ~ substance + sex) suggests that:

- The main effect of substance is significant and small (F(2, 242) = 4.36, p = 0.014;
- The main effect of sex is significant and small (F(1, 242) = 8.65, p = 0.004; Eta2 (

Effect sizes were labelled following Field's (2013) recommendations.

Finally, report also includes some functions to help you write the data analysis paragraph
about the tools used.

report(sessionInfo())

Analyses were conducted using the R Statistical language (version 4.0.4; R Core Team, 2C

https://github.com/easystats/report

68

HYPOTHESIS TESTING

References

Elin Waring, Michael Quinn, Amelia McNamara, Eduardo Arino de la Rubia, Hao Zhu and
H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2
Hadley Wickham, Romain Frangois, Lionel Henry and Kirill Miller (2021). dplyr: A Gra
John Fox and Sanford Weisberg (2019). An {R} Companion to Applied Regression, Third
John Fox, Sanford Weisberg and Brad Price (2019). carData: Companion to Applied Regr
Long JA (2020). _jtools: Analysis and Presentation of Social ScientificData_. R pack
Makowski, D., Ben-Shachar, M.S., Patil, I. & Lidecke, D. (2020). Automated reporting
Navarro, D. J. (2015) Learning statistics with R: A tutorial for psychology students
R Core Team (2021). R: A language and environment for statistical computing. R Found
Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R. Springer, N
Taiyun Wei and Viliam Simko (2017). R package "corrplot": Visualization of a Correla
Yihui Xie (2020). bookdown: Authoring Books and Technical Documents with R Markdown.
Yihui Xie (2021). knitr: A General-Purpose Package for Dynamic Report Generation in

Correlation and Regression

Correlation

Correlation measures the degree to which two variables are related to or associated with
each other. It provides information on the strength and direction of relationships. The most
widely used correlation index, also known as Pearson correlation, is

Oy
For populations: p = —%
050y
S,
For samples: r = —~2
P S.S,

Here are some notes on how to interpret correlations:

o Correlation can range from -1 to +1.

 The sign (either - or +) shows the direction of the correlation

o The value of correlation shows the magnitude of the correlation.

o As correlations get closer to either -1 or 41, the strength increases.

» Correlations near zero indicate very weak to no correlation.

There are many guidelines for categorizing weak, moderate, and strong correlations. Typi-
cally, researchers refers to Cohen’s guidelines! as shown below:

Correlation Interpretation

0.1 Small
0.3 Moderate
0.5 Strong

!Source: http://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/effectSize

69

http://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/effectSize

70 CORRELATION AND REGRESSION

In R, the cor () function provides correlation coefficients and matrices. For the correlation
between two variables (depressionl and mentall):

cor(medical$depressionl, medical$mentall)

[1] -0.6629

For the correlation between multiple variables:

cor(medical[, c("depressionl", "mentall", "physicall")])

depressionl mentall physicall

depressionl 1.0000 -0.66289 -0.32000
mentall -0.6629 1.00000 0.05698
physicall -0.3200 0.05698 1.00000

If some of the wvariables include missing values, then we can add either use =
"complete.obs" (listwise deletion of missing cases) or use = "pairwise.complete.obs"
(pairwise deletion of missing cases) inside the cor function.

To test the significance of the correlation, we can use the correlate function from the 1sr
package:

Activate the package
library("lsr")

correlate(medical[, c("depressionl", "mentall", "physicall")],
TRUE, "pearson")

CORRELATIONS

- correlation type: pearson
- correlations shown only when both variables are numeric

depressionl mentall physicall
depressionl . —0.663%*x* —0.320%*x
mentall —0.663%x*x* . 0.057
physicall -0.320%*x 0.057

Signif. codes: . =p < .1, * = p<.0b, **x = p<.01, **xx = p<.001

CORRELATION

- total number of tests run: 3
- correction for multiple testing: holm

depressionl mentall physicall

depressionl . 0.000 0.000
mentall 0.000 . 0.373
physicall 0.000 0.373

SAMPLE SIZES

depressionl mentall physicall

depressionl 246 246 246
mentall 246 246 246
physicall 246 246 246

71

In addition to printing correlation matrices, R also provides nice ways to visualize corre-
lations. In the following example, we will use the corrplot function from the corrplot

package (Wei and Simko 2017) to draw a correlation matrix plot.

Install and activate the package
install.packages("corrplot")
library("corrplot")

First, we need to save the correlation matriz
cor_scores <- cor(medical[, c("depressionl", "mentall", "physicall",
"depression2", "mental2", "physical2")])

Plot 1 with circles
corrplot(cor_scores, "circle")

Plot 2 with colors
corrplot(cor_scores, "color")

Plot 3 with numbers
corrplot(cor_scores, "number")

72 CORRELATION AND REGRESSION

depression2

mentall
physicall
mental2
physical2

depressionl

1
O
mentall . ‘
physicall
- 0
depression2 ‘ ‘ 0.2
0.4
mental2 ‘ ‘

0.6
physical2 ‘ ‘ 0.8

Figure 32: Correlation matrix plot with circles

‘ depressionl

depressionl
mentall
physicall
depression2
mental2
physical2

depressionl

mentall

physicall

depression2

mental2

physical2

Figure 33: Correlation matrix plot with colours

SIMPLE LINEAR REGRESSION 73

— (g
c c
kS) — Q Y,
0 I n ©
s 3 8 ¢ T 8
s @ 2 5§ ¢
© E S © S S L
depressionl | 1 |-0.66 0.8
0.6
mentall |-0.66| 1
0.4
physicall 1 0.56 || [0-2
- 0
depression2 1 |-0.79 0.2
0.4
mental2 -0.79 1
0.6
physical2 0.56 1 0.8
-1

Figure 34: Correlation matrix plot with numbers

Plot 4 with circles + lower triangular
corrplot(cor_scores, method="circle", type="lower")

Plot 5 with circles + lower triangular + ordered correlations
corrplot(cor_scores, method="circle", type="lower", order="hclust")

Simple Linear Regression

Linear regression is a standard tool that researchers often rely on when analyzing the relation-
ship between some predictors (i.e., independent variables) and an outcome (i.e., dependent
variable). In a simple linear regression model, we aim to fit the best linear line to the data
based on a single predictor so that the sum of residuals is the smallest. This method is
known as “ordinaly least squares” (OLS). Once the regression equation is computed, we can
use it to make predictions for a new sample of observations.

If Y is the dependent variable (DV) and X is the independent variable (IV), then the formula
that describes our simple regression model becomes:

Y;:lel—FbQ—FEl

74 CORRELATION AND REGRESSION

depressionl

mentall

‘ ‘ depres
‘ mentall
‘ physicall
‘ ‘ depression2

physicall

depression2

A
S
‘©
mental2 2
o
physical2 ‘ ‘
[B

-1 -0.8-0.6-0.4-0.2 0 0.2 04 06 08 1

Figure 35: Correlation matrix plot with circle and lower triangle

depressionl

‘ depres
‘ depression2
‘ ‘ physicall

depression2

physicall

physical2

mentall ‘
mental2 ‘

-1 -0.8-0.6-0.4-02 0 0.2 0.4 0.6 08 1

N
[
O
wn
>
=
a d
S

[

(D]
‘Eﬁ
S

[

Q
‘E

Figure 36: Correlation matrix plot with ordered correlations

SIMPLE LINEAR REGRESSION 75

where b; is the slope (the increase in Y for every one unit increase in X), by is the intercept
(the value of Y when X = 0), and ¢; is the residual (the difference between the predicted
values based on the regression model and the actual values of the dependent variable).

In R, there are many ways to run regression analyses. However, the simplest way to run a
regression model in R is to use the Im() function that fits a linear model to a given dataset
(see 71m in the console for the help page). Here are the typical elements of 1m():

o formula: A formula that specifies the regression model. This formula is of the form
DV ~ 1IV.
o data: The data frame containing the variables.

Example

Now let’s see how regression works in R. We want to predict patients’ mental scores at the
baseline (i.e., mentall) using their depression scores at the baseline (i.e., depressioni). To
see how this relationship looks like, we can first take a look at the scatterplot as well as the
correlation between the two variables.

cor(medical$depressionl, medical$mentall)

[1] -0.6629

r = —.66 is indicating that there is a negative and moderate relationship between the two
variables. Although we know that correlation does NOT mean causation, our knowledge or
theory from the literature may suggest that these two variables are indeed associated with
each other. So, we can move to the next step and plot these two variables in a scatterplot
using the ‘ggplot2 package (see http://sape.inf.usi.ch/quick-reference/ggplot2/colour for
many colour options in ggplot2).

Activate the ggplot2 first
library("ggplot2")

ggplot(medical,
aes(depressionl, mentall)) +
geom_point(2, "grey25") +
geom_smooth (1m, "blue", TRUE) +
labs("Depression scores",

"Mental scores",
"Depression and mental scores at the baseline") +
theme bw()

The scatterplot also confirms that there is a negative relationship between the two variables.
Now we can fit a regression model to the data to quantify this relationship.

http://sape.inf.usi.ch/quick-reference/ggplot2/colour

76 CORRELATION AND REGRESSION

Depression and mental scores at the baseline

60
n
© 401
o
[S]
%2}
g
c
(5]
=
201
[] [
) []
0 20 40

Depression scores

Figure 37: Scatterplot of depression and mental scores at the baseline

Set up the model and save it as modell
modell <- Ilm(mentall ~ depressionl, data = medical)

Print basic model output
print (modell)

Call:
Im(formula = mentall ~ depressionl, data = medical)

Coefficients:
(Intercept) depressionl
53.948 -0.683

Print detatled summary of the model
summary (modell)

Call:
Im(formula = mentall ~ depressionl, data = medical)

Residuals:

SIMPLE LINEAR REGRESSION 7

Min 1Q Median 3Q Max
-27.152 -6.993 0.039 5.8563 26.464

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 53.9477 1.7173 31.4 <2e-16 **x
depressionl -0.6834 0.0494 -13.8 <2e-16 **x
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

Residual standard error: 9.37 on 244 degrees of freedom
Multiple R-squared: 0.439, Adjusted R-squared: 0.437
F-statistic: 191 on 1 and 244 DF, p-value: <2e-16

The output shows that our regression equation is:

mentall = 53.9477 — 0.6834(depressionl)

suggesting that one unit increase in the depression scores corresponds to -0.6834 points
increase in the mental scores at the baseline.

t value in the output indicates the individual ¢ tests for testing whether intercept and slope
are significantly different from zero; i.e., Hy = by = 0 and Hy = b; = 0. The test for the
intercept is not really interesting as we rarely care about whether or not the intercept is
zero. However, for the slope, we want this test to be significant in order to conclude that the
predictor is indeed useful for predicting the dependent variable. In our example, t = —13.8
for the slope and its p-value is less than .001. This indicates that the slope was significantly
different from zero (i.e., an important predictor in our model). In the output *** shows the
level of significance.

Another important information is R?, which indicates the proportion of the variance ex-
plained by the predictor (depressioni) in the dependent variable (mentall). In our model,
R? = 0.439 — which means 43.9 of the variance in the mental scores can be explained by the
depression scores.

There are many guidelines for categorizing for interpreting R-squared values. Researchers
often refers to Cohen’s guidelines as shown below:

R-squared Interpretation

0.1 Small
0.09 Moderate
0.25 Large

Using these guidelines, we can say that our model indicates a large effect between the de-
pendent and independent variables.

78 CORRELATION AND REGRESSION

Finally, the output has additional information about the overall significance of the regression
model: F'(1,244) = 191,p < .001, suggesting that the model is statistically significant.
This information may not be useful when we have a simple regression model because we
already know that our predictor is significantly predicts the dependent variable. However,
this information will be more useful when we look at multiple regression where only some
variables might be significant, not all of them.

Multiple Regression

The simple linear regression model that we have discussed up to this point assumes that there
is a single predictor variable that we are interested in. However, in many (perhaps most)
research projects, we actually have multiple predictors that we want to examine. Therefore,
we can extend the linear regression framework to be able to include multiple predictors —
which is called multiple regression.

Multiple regression is conceptually very simple. All we do is to add more predictors into our
regression equation. Let’s suppose that we are interested in predicting the mental scores at
the baseline (mentall) using both the depression scores at the baseline (depressionl), the

physical scores at the baseline (physicall), and sex (sex). Our new regression equation
should look like this:

mentall = by + by (depressionl) + by(physicall) + bs(sex)

We would hope that the additional variables we include in the model will make our regression
model more precise. In other words, we will be able to better predict the mental scores with
the help of these predictors. The caveat is that these two variables should be correlated with
the dependent variable (i.e., mental scores) but they should not be highly correlated with
each other or the other predictor (i.e., depression scores). If this is the case, adding new
variables would not bring additional value to the regression model. Rather, the model would
have some redundant variables.

Example

Now let’s see how this will look like in R.

Add physicall into the previous model
model2 <- Ilm(mentall ~ depressionl + physicall, medical)

Print detailed summary of the model
summary (model2)

Call:

MULTIPLE REGRESSION 79

lm(formula = mentall ~ depressionl + physicall, data = medical)

Residuals:
Min 1Q Median 3Q Max
-23.51 -6.30 -0.45 6.11 26.79

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 64.9234 3.5619 18.23 < 2e-16 *xx
depressionl -0.7404 0.0510 -14.52 < 2e-16 **x
physicall -0.1920 0.0549 -3.49 0.00057 *x*x*
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.16 on 243 degrees of freedom
Multiple R-squared: 0.466, Adjusted R-squared: 0.462
F-statistic: 106 on 2 and 243 DF, p-value: <2e-16

The output shows that our new regression equation is:

mentall = 64.92 — 0.74(depressionl) — 0.19(physicall)

Both predictors negatively predict the mental scores and they are statistically significant
in the model. Our R-squared value increased to R* = 0.466, suggesting that 46.6 of the
variance can be explained by the two predictors that we have in the model.

By looking at the slopes for each predictor, we cannot tell which predictor plays a more
important role in the prediction. Therefore, we need to see the standardized slopes — which
are directly comparable based on their magnitudes. We can use the jtools package (Long
2021) to visualize the standardized slopes. To use the jtools package, we have to install
both jtools and ggstance.

Install and activate the packages
install.packages(c("jtools", "ggstance"))
library("jtools")

We will use the plot_summ function from the jtools package to visualize the slopes:

plot_summs(model?2, TRUE)

In the plot, the circles in the middle show the location of the standardized slopes (i.e.,
standardized regression coefficients) for both predictors and the line around the circles rep-
resent the confidence interval. We can see from Figure 38 that the standardized slope for
depressionl is much larger (around -8.5) whereas the standardized slope for physicall is

80 CORRELATION AND REGRESSION

depressionl

physicall

-10.0 -7.5 -5.0 -25 0.0
Estimate

Figure 38: Standardized regression coefficients in Model 2

smaller (around -2). So, we could say that the depressionl is a stronger predictor than
physicall in predicting mentall.

Let’s expand our model by adding sex. Because sex is a categorical variable, R will choose
one level of this variable as the reference category and give the results for the other category.
The default reference category is selected alphabetically. In the context of sex, the values
are male and female. Because f alphabetically comes first, female will be selected as the
reference category and we will see the results for male.

Add sex into the previous model
model3 <- 1lm(mentall ~ depressionl + physicall + sex, medical)

Print detailed summary of the model
summary (model3)

Call:
lm(formula = mentall ~ depressionl + physicall + sex, data = medical)

Residuals:
Min 1Q Median 3Q Max
-23.538 -6.409 -0.314 6.040 26.712

MULTIPLE REGRESSION

Estimate Std. Error t value Pr(>ltl|)

Coefficients:

(Intercept) 64.6403
depressionl -0.7386
physicall -0.1932
sexmale 0.3689

Signif. codes: O 'xxx!

0.001

3.7293
0.0515
0.0552
1.4105

17.
-14.
-3.
0.

l**l O

Residual standard error: 9.18 on 242

Multiple R-squared:

0.466, Adjusted

F-statistic: 70.5 on 3 and 242 DF,

33
33
50
26

.01

< 2e-16
< 2e-16
0.00056
0.79390

'x' 0.05

* k%

*kkk

Kook

.1 0.1

degrees of freedom
R-squared:

0.46

p-value: <2e-16

1

81

The output shows that the estimated slope for sexmale is 0.37; but this slope is not sta-
tistically significant as its p-value is 0.79. We could probably conclude that sex does not
explain any further variance in the model and therefore we can remove it from the model to
keep our regression model simple.

So far we tested three models: Model 1, Model 2, and Model 3. Because the models are

nested within each other (i.e., we incrementally added new variables), we can make a model

comparison to see if adding those additional predictors brought significant added-value to
the models with more predictors. We will use the anova function in base R to accomplish
this. This function does not necessarily run the same ANOVA that we discussed earlier. It
will compare the models based on their R-squared values.

anova(modell, model2, model3)

Analysis of Variance Table

Model 1: mentall ~ depressionl
Model 2: mentall ~ depressionl + physicall
Model 3: mentall ~ depressionl + physicall + sex

Res.Df RSS Df Sum of Sq
1 244 21411
2 243 20387 1
3 242 20381 1

Signif. codes: 0O 'xxx!

0.001

F Pr(>F)

1024 12.16 0.000568 *x*x*

6 0.07 0.79390

l**l

In the output, there are two comparisons:

e Model 1 vs. Model 2
e Model 2 vs. Model 3

0.

01

'x' 0.05

.1 0.1

1

82 CORRELATION AND REGRESSION

The comparison of Model 1 and Model 2 shows that F(1,1024) = 12.16, p < .001, suggesting
that the larger model (Model 2) explains significantly more variance than the smaller model
(Model 1).

The comparison of Model 2 and Model 3 shows that F'(1,6) = 0.07,p = .793, suggesting that
the larger model (Model 3) does NOT explain significantly more variance than the smaller
model (Model 2), which confirms our earlier finding that sex did not bring additional value
to the model.

We can also compare the three models visually.

plot_summs(modell, model2, model3, TRUE)

depressionl

Model
physicall Model 1
Model 2
Model 3
sex

-8 -4 0
Estimate

Figure 39: Comparison of three models

Exercise 10

Run a multiple regression model where your dependent variable will be depression?2 (i.e.,
depression scores after 6 months) and your predictors will be:

» depressionl (i.e., depression scores at the baseline)
e treatl (i.e., whether the patient received treatment)

ADDITIONAL PACKAGES TO CONSIDER 83

» sex (i.e., patients’ sex)
The questions we can answer are:

1. Which variables are significant?
2. Do we need all three predictors?
3. How is the R-squared value for the model?

Additional Packages to Consider

There are also additional R packages that might be useful when conducting regression anal-
ysis. In the last chapter, we used report (https://github.com/easystats/report) to produce
reports of t-tests. We can use the same package to create reports of regression models.

Activate the package
library("report")

model <- lm(mentall ~ depressionl + physicall + sex, medical)

Print model parameters and additional information
report (model)

We fitted a linear model (estimated using OLS) to predict mentall with depressionl, phys

- The effect of depressionl is significantly negative (beta = -0.74, 95% CI [-0.84, -C
- The effect of physicall is significantly negative (beta = -0.19, 95% CI [-0.30, -0.C
- The effect of sex [male] is non-significantly positive (beta = 0.37, 95% CI [-2.41,

Standardized parameters were obtained by fitting the model on a standardized version of

Or, print out specific parts of the model output
report_model (model)

linear model (estimated using OLS) to predict mentall with depressionl, physicall and se

report_performance(model)

The model explains a significant and substantial proportion of variance (R2 = 0.47, F(3,

https://github.com/easystats/report

84 CORRELATION AND REGRESSION

report_statistics(model)

beta = 64.64, 95 CI [67.29, 71.99], t(242) = 17.33, p < .001; Std. beta = -0.02, 95} CI
beta = -0.74, 95% CI [-0.84, -0.64], t(242) = -14.33, p < .001; Std. beta = -0.72, 95% C
beta = -0.19, 95% CI [-0.30, -0.08], t(242) = -3.50, p < .001; Std. beta = -0.17, 95 CI
beta = 0.37, 95} CI [-2.41, 3.15], t(242) = 0.26, p = 0.794; Std. beta = 0.03, 95% CI [-

Another useful package for reporting regression results is parameters (https://github.com/
easystats/parameters). The goal of this package is to facilitate and streamline the process
of reporting results of statistical models, which includes the easy and intuitive calculation of
standardized estimates or robust standard errors and p-values.

Install the activate the package
install.packages("parameters")

library("parameters")

To view regular model parameters
model parameters(model)

To view standardized model parameters

model parameters(model, "refit")

Parameter | Coefficient | SE | 95% CI | t(242) | P
(Intercept) | 64.64 | 3.73 | [67.29, 71.99] | 17.33 | < .001
depressionl | -0.74 | 0.05 | [-0.84, -0.64] | -14.33 | < .001
physicall | -0.19 | 0.06 | [-0.30, -0.08] | -3.50 | < .001
sex [male] | 0.37 | 1.41 | [-2.41, 3.15] | 0.26 | 0.794
Parameter | Coefficient | SE | 95% CI | t(242) | P
(Intercept) | -0.02 | 0.10 | [-0.22, 0.171 | -0.23 | 0.818
depressionl | -0.72 | 0.05 | [-0.81, -0.62] | -14.33 | < .001
physicall | -0.17 | 0.05 | [-0.27, -0.08] | -3.50 | < .001
sex [male] | 0.03 | 0.11 | [-0.19, 0.25] | 0.26 | 0.794

Lastly, performance (https://github.com/easystats/performance) is another useful pack-
age for evaluating the quality of model fit for regression models. The package provides
several fit indices to evaluate model fit. Also, it has data visualization tools that facilitate
model diagnostics.

https://github.com/easystats/parameters
https://github.com/easystats/parameters
https://github.com/easystats/performance

ADDITIONAL PACKAGES TO CONSIDER

Install the activate the package
install.packages("performance")
library("performance")

Model performance summaries
model performance (model)

Check for heteroskedasticity
check_heteroscedasticity(model)

Comprehensive visualization of model checks
check model (model)

Indices of model performance
AIC | BIC | R2 | R2 (adj.) | RMSE | Sigma

1794.707 | 1812.234 | 0.466 | 0.460 | 9.102 | 9.177

OK: Error variance appears to be homoscedastic (p = 0.346).

Linearity - Homogeneity of Variance
n Reference line should be flat and horizc c_jd Reference line should be flat and horiz
s) S ° °

° = 15 °
3 . AL 8 3 |2 10 _ e sl >
B - (; e ° = 05 A
Qo — L] a @ - 0.0 e L
&1 20 30 40 50 & 20 30 40 50
S Fitted values —~ Fitted values
g Collinearity @ Influential Observations
A Higher bars (>5) indicate potential collii S Points should be inside the contour line:
< 10. S %
8 & 4] E
E : x =3
= depressionl physicall sex o) 0.00 0.01 0.02 0.03 0.04
n .

g . low (< 5) Leverage (hj)
§ Normality of Residuals Normality of Residuals
3 Dots should fall along the line Distribution should be close to the normal curve
Z
o _
e "3 2 -1 0 1 2 3 20 -10 0 10 20
S Standard Normal Distribution Quantiles Residuals

85

86

CORRELATION AND REGRESSION

Additional R Features

As we conclude this training, I also want to mention a few additional features that you might
find useful when analyzing and visualizing data using R.

Removing Objects from the Workspace

When you define an object (e.g., a dataset) within an R session, it stays in the workspace
until you close R. However, if you decide to delete a particular object while still using R,
one of the following methods can be used:

x <= 1:100

Use rm() to remove = entirely
rm(x)

Or, turn z into NULL (deletes the content of x)
x <- NULL

Saving Output in R

There are several ways to save the output of your analysis in R (i.e., everything printed on
the console section). The following are some of the options to save output in R:

Using the sink Function
Using the sink Function, it is possible to create an empty text document (called
my_output.txt in the following example) and capture the output printed in the console.

All the output, including warning messages, in the console is saved into the document once
the final sink () function is executed.

87

88 ADDITIONAL R FEATURES

Start saving the output
sink("my_output.txt")

fit <- lm(mpg ~ wt, data = mtcars)
summary (fit)

Stop saving the output
sink()

Saving Objects from an R Session

If you want to save on particular object that you made (e.g., a dataset) for use in R later,
you can use the save function.

mydata <- data.frame(person = 1:10,
age = sample.int (30, 10))

Save the data
save(mydata, file="myfile.Rdata")

Load the data when needed again
load("myfile.Rdata")

Alternatively, you can save the entire R session using save.image(). This saves all of the
objects to a file “RData” in your working directory.

mydatal <- data.frame(person = 1:10,
age = sample.int (30, 10))

mydata2 <- data.frame(person = 1:10,
weight = rnorm(10, 75, 4))

x <= 1:100

It saves all objects im one place
save.image(file = "myfile.Rdata")

Load the data when needed again
load("myfile.Rdata")

UNLOADING A PACKAGE 89

Saving the History of an R Session

If you want to save all the commands you used in a session, then you can use the savehistory
function. This is helpful because it allows you to browse the history (i.e., all the commands
or functions you have entered) when you load the same history into R in the future. You
simply press the up-arrow and down-arrow keys to view the commands you typed earlier.

Save the history
savehistory("my analysis.Rhistory")

Load the history when needed again
loadhistory("my_analysis.Rhistory")

Using R Markdown

R Markdown (https://rmarkdown.rstudio.com/) is an excellent way to save all the output
from R (e.g., codes, output, data visualizations) in a nice, readable format. R Markdown
allows users to turn their analysis into high quality documents, which then can be exported
as an HTML file, a PDF, or a Word document. To see how R Markdown works, check out
this nice tutorial: https://rmarkdown.rstudio.com/lesson-1.html

Unloading a Package

Sometimes you may want to deactivate or unload some packages that you have do not
need for your analysis anymore. The detach function allows users to remove a particular
package from an R session. For example, let’s assume that we activated the dplyr package
but realized that we do not need this particular package anymore. The following line will
remove the package from our session (i.e., the package will be deactivated):

detach("package:dplyr", TRUE)

Updating R and R Packages

Every now and then the authors of packages release updated versions of their packages. The
updated versions add new functions, fix bugs, and so on. Therefore, it might be a good
idea to update your packages periodically. To update a particular package, we can use the
update.packages function.

Update the dplyr package
update.packages("dplyr")

https://rmarkdown.rstudio.com/
https://rmarkdown.rstudio.com/lesson-1.html

90 ADDITIONAL R FEATURES

About every six months or so, a new version of R is released. It is not possible to update
R from within RStudio. To get the new version, you can go to the CRAN website (https:
//cran.r-project.org/) and download the most recent version of R. Alternatively, you can
update R using the R GUI (not RStudio). The following commands will install the installr
package, download and install the latest version of R, and finally carry all of the packages
in your library to the new version of R.

Install and activate the package
install.packages("installr")
library("installr")

Update R with default options
updateR (TRUE)

Or, installr asks what you want at each step
updateR ()

https://cran.r-project.org/
https://cran.r-project.org/

References

Fox, John, Sanford Weisberg, and Brad Price. 2020. Car: Companion to Applied Regression.
https://CRAN.R-project.org/package=car.

Long, Jacob A. 2021. Jtools: Analysis and Presentation of Social Scientific Data. https:
//jtools.jacob-long.com.

Navarro, Daniel. 2015. Lsr: Companion to "Learning Statistics with r'. http://health.
adelaide.edu.au/psychology /ccs/teaching /lsr/.

R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Sarkar, Deepayan. 2020. Lattice: Trellis Graphics for r. http://lattice.r-forge.r-project.org/.

Waring, Elin, Michael Quinn, Amelia McNamara, Eduardo Arino de la Rubia, Hao Zhu,
and Shannon Ellis. 2020. Skimr: Compact and Flexible Summaries of Data. https:
//CRAN.R-project.org/package=skimr.

Wei, Taiyun, and Viliam Simko. 2017. Corrplot: Visualization of a Correlation Matrix.
https://github.com/taiyun/corrplot.

Wheelan, Charles. 2013. Naked Statistics: Stripping the Dread from Data. New York, NY:
Norton; Company.

Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi,
Claus Wilke, Kara Woo, Hiroaki Yutani, and Dewey Dunnington. 2020. Ggplot2: Create
FElegant Data Visualisations Using the Grammar of Graphics. https://CRAN.R-project.
org/package=ggplot2.

91

https://CRAN.R-project.org/package=car
https://jtools.jacob-long.com
https://jtools.jacob-long.com
http://health.adelaide.edu.au/psychology/ccs/teaching/lsr/
http://health.adelaide.edu.au/psychology/ccs/teaching/lsr/
https://www.R-project.org/
http://lattice.r-forge.r-project.org/
https://CRAN.R-project.org/package=skimr
https://CRAN.R-project.org/package=skimr
https://github.com/taiyun/corrplot
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2

92

ADDITIONAL R FEATURES

	Overview
	Course Description
	Course Objectives
	Instructor Information
	Course Structure
	Course Materials
	Learning Process
	Additional Resources

	Introduction
	R and RStudio
	Basics of the R Language

	Data Wrangling
	Creating Datasets in R
	Importing Data into R
	Understanding the Data
	Indexing
	Subsetting
	Other Data Manipulation Tools

	Descriptive Statistics
	Quick Summary
	Frequency Tables
	Central Tendency and Dispersion

	Data Visualizations in R
	Base R Graphics
	ggplot2 Graphics

	Hypothesis Testing
	Some Theory
	Types of Inferential Statistics
	One-Sample t Test
	Independent-Samples t Test
	t-test with Paired Data
	Analysis of Variance (ANOVA)
	Exercise 9
	Additional Packages to Consider

	Correlation and Regression
	Correlation
	Simple Linear Regression
	Multiple Regression
	Exercise 10
	Additional Packages to Consider

	Additional R Features
	Removing Objects from the Workspace
	Saving Output in R
	Unloading a Package
	Updating R and R Packages

	References

